This work completes the classification of the cubic vertices for arbitrary spin massless bosons in three dimensions started in a previous companion paper by constructing parity-odd vertices. Similarly to the parity-even case, there is a unique parity-odd vertex for any given triple $s_1geq s_2geq s_3geq 2$ of massless bosons if the triangle inequalities are satisfied ($s_1<s_2+s_3$) and none otherwise. These vertices involve two (three) derivatives for odd (even) values of the sum $s_1+s_2+s_3$. A non-trivial relation between parity-even and parity-odd vertices is found. Similarly to the parity-even case, the scalar and Maxwell matter can couple to higher spins through current couplings with higher derivatives. We comment on possible lessons for 2d CFT. We also derive both parity-even and parity-odd vertices with Chern-Simons fields and comment on the analogous classification in two dimensions.