Do you want to publish a course? Click here

Baseline-dependent sampling and windowing for radio interferometry: data compression, field-of-interest shaping and outer field suppression

175   0   0.0 ( 0 )
 Added by Marcellin Atemkeng
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Traditional radio interferometric correlators produce regular-gridded samples of the true $uv$-distribution by averaging the signal over constant, discrete time-frequency intervals. This regular sampling and averaging then translate to be irregular-gridded samples in the $uv$-space, and results in a baseline-length-dependent loss of amplitude and phase coherence, which is dependent on the distance from the image phase centre. The effect is often referred to as decorrelation in the $uv$-space, which is equivalent in the source domain to smearing. This work discusses and implements a regular-gridded sampling scheme in the $uv$-space (baseline-dependent sampling) and windowing that allow for data compression, field-of-interest shaping and source suppression. The baseline-dependent sampling requires irregular-gridded sampling in the time-frequency space i.e. the time-frequency interval becomes baseline-dependent. Analytic models and simulations are used to show that decorrelation remains constant across all the baselines when applying baseline-dependent sampling and windowing. Simulations using MeerKAT telescope and the European Very Long Baseline Interferometry Network show that both data compression, field-of-interest shaping and outer field-of-interest suppression are achieved.



rate research

Read More

This paper presents a detailed analysis of the applicability and benefits of baseline dependent averaging (BDA) in modern radio interferometers and in particular the Square Kilometre Array (SKA). We demonstrate that BDA does not affect the information content of the data other than a well-defined decorrelation loss for which closed form expressions are readily available. We verify these theoretical findings using simulations. We therefore conclude that BDA can be used reliably in modern radio interferometry allowing a reduction of visibility data volume (and hence processing costs for handling visibility data) by more than 80%.
Xova is a software package that implements baseline-dependent time and channel averaging on Measurement Set data. The uv-samples along a baseline track are aggregated into a bin until a specified decorrelation tolerance is exceeded. The degree of decorrelation in the bin correspondingly determines the amount of channel and timeslot averaging that is suitable for samples in the bin. This necessarily implies that the number of channels and timeslots varies per bin and the output data loses the rectilinear input shape of the input data.
With the development of modern radio interferometers, wide-field continuum surveys have been planned and undertaken, for which accurate wide-field imaging methods are essential. Based on the widely-used W-stacking method, we propose a new wide-field imaging algorithm that can synthesize visibility data from a model of the sky brightness via degridding, able to construct dirty maps from measured visibility data via gridding. Results carry the smallest approximation error yet achieved relative to the exact calculation involving the direct Fourier transform. In contrast to the original W-stacking method, the new algorithm performs least-misfit optimal gridding (and degridding) in all three directions, and is capable of achieving much higher accuracy than is feasible with the original algorithm. In particular, accuracy at the level of single precision arithmetic is readily achieved by choosing a least-misfit convolution function of width W=7 and an image cropping parameter of x_0=0.25. If the accuracy required is only that attained by the original W-stacking method, the computational cost for both the gridding and FFT steps can be substantially reduced using the proposed method by making an appropriate choice of the width and image cropping parameters.
Astronomers usually need the highest angular resolution possible, but the blurring effect of diffraction imposes a fundamental limit on the image quality from any single telescope. Interferometry allows light collected at widely-separated telescopes to be combined in order to synthesize an aperture much larger than an individual telescope thereby improving angular resolution by orders of magnitude. Radio and millimeter wave astronomers depend on interferometry to achieve image quality on par with conventional visible and infrared telescopes. Interferometers at visible and infrared wavelengths extend angular resolution below the milli-arcsecond level to open up unique research areas in imaging stellar surfaces and circumstellar environments. In this chapter the basic principles of interferometry are reviewed with an emphasis on the common features for radio and optical observing. While many techniques are common to interferometers of all wavelengths, crucial differences are identified that will help new practitioners avoid unnecessary confusion and common pitfalls. Concepts essential for writing observing proposals and for planning observations are described, depending on the science wavelength, angular resolution, and field of view required. Atmospheric and ionospheric turbulence degrades the longest-baseline observations by significantly reducing the stability of interference fringes. Such instabilities represent a persistent challenge, and the basic techniques of phase-referencing and phase closure have been developed to deal with them. Synthesis imaging with large observing datasets has become a routine and straightforward process at radio observatories, but remains challenging for optical facilities. In this context the commonly-used image reconstruction algorithms CLEAN and MEM are presented. Lastly, a concise overview of current facilities is included as an appendix.
Optical long baseline interferometry is a technique that has generated almost 850 refereed papers to date. The targets span a large variety of objects from planetary systems to extragalactic studies and all branches of stellar physics. We have created a database hosted by the JMMC and connected to the Optical Long Baseline Interferometry Newsletter (OLBIN) web site using MySQL and a collection of XML or PHP scripts in order to store and classify these publications. Each entry is defined by its ADS bibcode, includes basic ADS informations and metadata. The metadata are specified by tags sorted in categories: interferometric facilities, instrumentation, wavelength of operation, spectral resolution, type of measurement, target type, and paper category, for example. The whole OLBIN publication list has been processed and we present how the database is organized and can be accessed. We use this tool to generate statistical plots of interest for the community in optical long baseline interferometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا