Do you want to publish a course? Click here

Galaxy clusters in simulations of the local Universe: a matter of constraints

246   0   0.0 ( 0 )
 Added by Jenny Sorce Dr.
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

To study the full formation and evolution history of galaxy clusters and their population, high resolution simulations of the latter are flourishing. However comparing observed clusters to the simulated ones on a one-to-one basis to refine the models and theories down to the details is non trivial. The large variety of clusters limits the comparisons between observed and numerical clusters. Simulations resembling the local Universe down to the cluster scales permit pushing the limit. Simulated and observed clusters can be matched on a one-to-one basis for direct comparisons provided that clusters are well reproduced besides being in the proper large scale environment. Comparing random and local-Universe like simulations obtained with differently grouped observational catalogs of peculiar velocities, this paper shows that the grouping scheme used to remove non-linear motions in the catalogs that constrain the simulations affects the quality of the numerical clusters. With a less aggressive grouping scheme - galaxies still falling onto clusters are preserved - combined with a bias minimization scheme, the mass of the dark matter halos, simulacra for 5 local clusters - Virgo, Centaurus, Coma, Hydra and Perseus - is increased by 39% closing the gap with observational mass estimates. Simulacra are found on average in 89% of the simulations, an increase of 5% with respect to the previous grouping scheme. The only exception is Perseus. Since the Perseus-Pisces region is not well covered by the used peculiar velocity catalog, the latest release let us foresee a better simulacrum for Perseus in a near future.



rate research

Read More

42 - Jenny G. Sorce 2018
Galaxy clusters are excellent cosmological probes provided that their formation and evolution within the large scale environment are precisely understood. Therefore studies with simulated galaxy clusters have flourished. However detailed comparisons between simulated and observed clusters and their population - the galaxies - are complicated by the diversity of clusters and their surrounding environment. An original way initiated by Bertschinger as early as 1987, to legitimize the one-to-one comparison exercise down to the details, is to produce simulations constrained to resemble the cluster under study within its large scale environment. Subsequently several methods have emerged to produce simulations that look like the local Universe. This paper highlights one of these methods and its essential steps to get simulations that not only resemble the local Large Scale Structure but also that host the local clusters. It includes a new modeling of the radial peculiar velocity uncertainties to remove the observed correlation between the decreases of the simulated cluster masses and of the amount of data used as constraints with the distance from us. This method has the particularity to use solely radial peculiar velocities as constraints: no additional density constraints are required to get local cluster simulacra. The new resulting simulations host dark matter halos that match the most prominent local clusters such as Coma. Zoom-in simulations of the latter and of a volume larger than the 30 Mpc/h radius inner sphere become now possible to study local clusters and their effects. Mapping the local Sunyaev-Zeldovich and Sachs-Wolfe effects can follow.
We make detailed theoretical predictions for the assembly properties of the Local Group (LG) in the standard LambdaCDM cosmological model. We use three cosmological N-body dark matter simulations from the CLUES project, which are designed to reproduce the main dynamical features of the matter distribution down to the scale of a few Mpc around the LG. Additionally, we use the results of an unconstrained simulation with a sixty times larger volume to calibrate the influence of cosmic variance. We characterize the Mass Aggregation History (MAH) for each halo by three characteristic times, the formation, assembly and last major merger times. A major merger is defined by a minimal mass ratio of 10:1. We find that the three LGs share a similar MAH with formation and last major merger epochs placed on average approx 10 - 12 Gyr ago. Between 12% and 17% of the halos in the mass range 5 x 10^11 Msol/h < M_h < 5 x 10^12 Msol/h have a similar MAH. In a set of pairs of halos within the same mass range, a fraction of 1% to 3% share similar formation properties as both halos in the simulated LG. An unsolved question posed by our results is the dynamical origin of the MAH of the LGs. The isolation criteria commonly used to define LG-like halos in unconstrained simulations do not narrow down the halo population into a set with quiet MAHs, nor does a further constraint to reside in a low density environment. The quiet MAH of the LGs provides a favorable environment for the formation of disk galaxies like the Milky Way and M31. The timing for the beginning of the last major merger in the Milky Way dark matter halo matches with the gas rich merger origin for the thick component in the galactic disk. Our results support the view that the specific large and mid scale environment around the Local Group play a critical role in shaping its MAH and hence its baryonic structure at present.
We present a study on the coherent rotation of the intracluster medium and dark matter components of simulated galaxy clusters extracted from a volume-limited sample of the MUSIC project. The set is re-simulated with three different recipes for the gas physics: $(i)$ non-radiative, $(ii)$ radiative without AGN feedback, and $(iii)$ radiative with AGN feedback. Our analysis is based on the 146 most massive clusters identified as relaxed, 57 per cent of the total sample. We classify these objects as rotating and non-rotating according to the gas spin parameter, a quantity that can be related to cluster observations. We find that 4 per cent of the relaxed sample is rotating according to our criterion. By looking at the radial profiles of their specific angular momentum vector, we find that the solid body model is not a suitable description of rotational motions. The radial profiles of the velocity of the dark matter show a prevalence of the random velocity dispersion. Instead, the intracluster medium profiles are characterized by a comparable contribution from the tangential velocity and the dispersion. In general, the dark matter component dominates the dynamics of the clusters, as suggested by the correlation between its angular momentum and the gas one, and by the lack of relevant differences among the three sets of simulations.
Near field cosmology is practiced by studying the Local Group (LG) and its neighbourhood. The present paper describes a framework for simulating the near field on the computer. Assuming the LCDM model as a prior and applying the Bayesian tools of the Wiener filter (WF) and constrained realizations of Gaussian fields to the Cosmicflows-2 (CF2) survey of peculiar velocities, constrained simulations of our cosmic environment are performed. The aim of these simulations is to reproduce the LG and its local environment. Our main result is that the LG is likely a robust outcome of the LCDM scenario when subjected to the constraint derived from CF2 data, emerging in an environment akin to the observed one. Three levels of criteria are used to define the simulated LGs. At the base level, pairs of halos must obey specific isolation, mass and separation criteria. At the second level the orbital angular momentum and energy are constrained and on the third one the phase of the orbit is constrained. Out of the 300 constrained simulations 146 LGs obey the first set of criteria, 51 the second and 6 the third. The robustness of our LG factory enables the construction of a large ensemble of simulated LGs. Suitable candidates for high resolution hydrodynamical simulations of the LG can be drawn from this ensemble, which can be used to perform comprehensive studies of the formation of the LG
162 - Gustavo Yepes 2013
We review how dark matter is distributed in our local neighbourhood from an observational and theoretical perspective. We will start by describing first the dark matter halo of our own galaxy and in the Local Group. Then we proceed to describe the dark matter distribution in the more extended area known as the Local Universe. Depending on the nature of dark matter, numerical simulations predict different abundances of substructures in Local Group galaxies, in the number of void regions and in the abundance of low rotational velocity galaxies in the Local Universe. By comparing these predictions with the most recent observations, strong constrains on the physical properties of the dark matter particles can be derived. We devote particular attention to the results from the Constrained Local UniversE Simulations (CLUES) project, a special set of simulations whose initial conditions are constrained by observational data from the Local Universe. The resulting simulations are designed to reproduce the observed structures in the nearby universe. The CLUES provides a numerical laboratory for simulating the Local Group of galaxies and exploring the physics of galaxy formation in an environment designed to follow the observed Local Universe. It has come of age as the numerical analogue of Near-Field Cosmology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا