Cyber-Physical Testbed for Power System Wide-Area Measurement-Based Control Using Open-Source Software


Abstract in English

The electric power system is a cyber-physical system with power flow in the physical system and information flow in the cyber. Simulation is crucial to understanding the dynamics and control of electric power systems yet the underlying communication system has historically been ignored in these studies. This paper aims at meeting the increasing needs to simulate the operations of a real power system including the physical system, the energy management system, the communication system, and the emerging wide-area measurement-based controls. This paper proposes a cyber-physical testbed design and implementation for verifying and demonstrating wide-area control methods based on streaming telemetry and phasor measurement unit data. The proposed decoupled architecture is composed of a differential algebraic equation based physical system simulator, a software-defined network, a scripting language environment for prototyping an EMS system and a control system, all of which are integrated over industry-standard communication protocols. The proposed testbed is implemented using open-source software packages managed by a Python dispatcher. Finally, demonstrations are presented to show two wide-area measurement-based controls - system separation control and hierarchical voltage control, in the implemented testbed.

Download