The Monte Carlo Ferromagnetic Ising model was used to study the electrical properties of manganese oxides due to the charge ordering phase occurring at doping, x = 0.5. The half-doped manganites have an insulator antiferromagnetic ground state. We calculated the internal energy, specific heat, resistivity and the magneto-resistance, MR, with parallel and anti-parallel applied magnetic fields. Our simulation reveals that the resistivity decreases exponentially and the electric current increases with increasing temperature according the free charge increase, to transport from an insulator to conductor phase. The magnetoresistance has negative small values with parallel magnetic field but has positive high values with unti-parallel magnetic field. The obtained semiconductor-metal transition behavior candidates the half-doped manganites to be very good semiconductors diode junctions.