Do you want to publish a course? Click here

A comparison of semi-Lagrangian discontinuous Galerkin and spline based Vlasov solvers in four dimensions

177   0   0.0 ( 0 )
 Added by Lukas Einkemmer
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The purpose of the present paper is to compare two semi-Lagrangian methods in the context of the four-dimensional Vlasov--Poisson equation. More specifically, our goal is to compare the performance of the more recently developed semi-Lagrangian discontinuous Galerkin scheme with the de facto standard in Eulerian Vlasov simulation (i.e. using cubic spline interpolation). To that end, we perform simulations for nonlinear Landau damping and a two-stream instability and provide benchmarks for the SeLaLib and sldg codes (both on a workstation and using MPI on a cluster). We find that the semi-Lagrangian discontinuous Galerkin scheme shows a moderate improvement in run time for nonlinear Landau damping and a substantial improvement for the two-stream instability. It should be emphasized that these results are markedly different from results obtained in the asymptotic regime (which favor spline interpolation). Thus, we conclude that the traditional approach of evaluating numerical methods is misleading, even for short time simulations. In addition, the absence of any All-to-All communication in the semi-Lagrangian discontinuous Galerkin method gives it a decisive advantage for scaling to more than 256 cores.



rate research

Read More

In this paper we consider a level set reinitialization technique based on a high-order, local discontinuous Galerkin method on unstructured triangular meshes. A finite volume based subcell stabilization is used to improve the nonlinear stability of the method. Instead of the standard hyperbolic level set reinitialization, the flow of time Eikonal equation is discretized to construct an approximate signed distance function. Using the Eikonal equation removes the regularization parameter in the standard approach which allows more predictable behavior and faster convergence speeds around the interface. This makes our approach very efficient especially for banded level set formulations. A set of numerical experiments including both smooth and non-smooth interfaces indicate that the method experimentally achieves design order accuracy.
114 - S. Colombi , C. Alard 2017
We propose a new semi-Lagrangian Vlasov-Poisson solver. It employs elements of metric to follow locally the flow and its deformation, allowing one to find quickly and accurately the initial phase-space position $Q(P)$ of any test particle $P$, by expanding at second order the geometry of the motion in the vicinity of the closest element. It is thus possible to reconstruct accurately the phase-space distribution function at any time $t$ and position $P$ by proper interpolation of initial conditions, following Liouville theorem. When distorsion of the elements of metric becomes too large, it is necessary to create new initial conditions along with isotropic elements and repeat the procedure again until next resampling. To speed up the process, interpolation of the phase-space distribution is performed at second order during the transport phase, while third order splines are used at the moments of remapping. We also show how to compute accurately the region of influence of each element of metric with the proper percolation scheme. The algorithm is tested here in the framework of one-dimensional gravitational dynamics but is implemented in such a way that it can be extended easily to four or six-dimensional phase-space. It can also be trivially generalised to plasmas.
Discontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analysis and practical computations. In this paper, we present a new symmetric interior penalty DG scheme with a modified penalty term. We show that, without imposing the shape-regularity condition on the meshes, the new DG scheme inherits all of the good properties of standard DG methods, and is thus robust on anisotropic meshes. Numerical experiments confirm the theoretical error estimates obtained.
In this paper we present a numerical discretization of the coupled elasto-acoustic wave propagation problem based on a Discontinuous Galerkin Spectral Element (DGSE) approach in a three-dimensional setting. The unknowns of the coupled problem are the displacement field and the velocity potential, in the elastic and the acoustic domains, respectively, thereby resulting in a symmetric formulation. After stating the main theoretical results, we assess the performance of the method by convergence tests carried out on both matching and non-matching grids, and we simulate realistic scenarios where elasto-acoustic coupling occurs. In particular, we consider the case of Scholte waves and the scattering of elastic waves by an underground acoustic cavity. Numerical simulations are carried out by means of the code SPEED, available at http://speed.mox.polimi.it.
We present a discontinuous Galerkin internal-penalty scheme that is applicable to a large class of linear and non-linear elliptic partial differential equations. The scheme constitutes the foundation of the elliptic solver for the SpECTRE numerical relativity code. As such it can accommodate (but is not limited to) elliptic problems in linear elasticity, general relativity and hydrodynamics, including problems formulated on a curved manifold. We provide practical instructions that make the scheme functional in a production code, such as instructions for imposing a range of boundary conditions, for implementing the scheme on curved and non-conforming meshes and for ensuring the scheme is compact and symmetric so it may be solved more efficiently. We report on the accuracy of the scheme for a suite of numerical test problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا