Do you want to publish a course? Click here

Dynamical Phase Transition of two-component Bose-Einstein condensate with nonlinear tunneling in an optomechanical cavity-mediated double-well system

80   0   0.0 ( 0 )
 Added by Tan Lei
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the dynamical phase transition of two-component Bose-Einstein condensate with nonlinear tunneling, which is trapped inside a double-well and dispersively coupled to a single mode of a high-finesse optical cavity with one moving end mirror driven by a single mode standing field. The nonlinear tunneling interaction leads to an increase of stability points and riches the phase diagram of the system. It is shown that the appearance of the moving end mirror speeds up the tunneling of Bose-Einstein condensates, which makes population difference between two wells and regulates the number of the stability points of the system.



rate research

Read More

243 - D. Nagy , G. Konya , G. Szirmai 2009
We show that the motion of a laser-driven Bose-Einstein condensate in a high-finesse optical cavity realizes the spin-boson Dicke-model. The quantum phase transition of the Dicke-model from the normal to the superradiant phase corresponds to the self-organization of atoms from the homogeneous into a periodically patterned distribution above a critical driving strength. The fragility of the ground state due to photon measurement induced back action is calculated.
182 - D. Nagy , G. Szirmai , P. Domokos 2013
The dispersive interaction of a Bose-Einstein condensate with a single mode of a high-finesse optical cavity realizes the radiation pressure coupling Hamiltonian. In this system the role of the mechanical oscillator is played by a single condensate excitation mode that is selected by the cavity mode function. We study the effect of atomic s-wave collisions and show that it merely renormalizes parameters of the usual optomechanical interaction. Moreover, we show that even in the case of strong harmonic confinement---which invalidates the use of Bloch states---a single excitation mode of the Bose-Einstein condensate couples significantly to the light field, that is the simplified picture of a single mechanical oscillator mode remains valid.
We propose a novel type of composite light-matter magnetometer based on a transversely driven multi-component Bose-Einstein condensate coupled to two distinct electromagnetic modes of a linear cavity. Above the critical pump strength, the change of the population imbalance of the condensate caused by an external magnetic field entails the change of relative photon number of the two cavity modes. Monitoring the cavity output fields thus allows for nondestructive measurement of the magnetic field in real time. We show that the sensitivity of the proposed magnetometer exhibits Heisenberg-like scaling with respect to the atom number. For state-of-the-art experimental parameters, we calculate the lower bound on the sensitivity of such a magnetometer to be of the order of fT/$sqrt{mathrm{Hz}}$--pT/$sqrt{mathrm{Hz}}$ for a condensate of $10^4$ atoms with coherence times of the order of several ms.
292 - G. Konya , G. Szirmai , P. Domokos 2014
We present a general theory for calculating the damping rate of elementary density wave excitations in a Bose-Einstein condensate strongly coupled to a single radiation field mode of an optical cavity. Thereby we give a detailed derivation of the huge resonant enhancement in the Beliaev damping of a density wave mode, predicted recently by Konya et al., Phys.~Rev.~A 89, 051601(R) (2014). The given density-wave mode constitutes the polariton-like soft mode of the self-organization phase transition. The resonant enhancement takes place, both in the normal and ordered phases, outside the critical region. We show that the large damping rate is accompanied by a significant frequency shift of this polariton mode. Going beyond the Born-Markov approximation and determining the poles of the retarded Greens function of the polariton, we reveal a strong coupling between the polariton and a collective mode in the phonon bath formed by the other density wave modes.
We study quasiparticle scattering effects on the dynamics of a homogeneous Bose-Einstein condensate of ultracold atoms coupled to a single mode of an optical cavity. The relevant excitations, which are polariton-like mixed excitations of photonic and atomic density-wave modes, are identified. All the first-order correlation functions are presented by means of the Keldysh Greens function technique. Beyond confirming the existence of the resonant enhancement of Beliaev damping, we find a very structured spectrum of fluctuations. There is a spectral hole burning at half of the recoil frequency reflecting the singularity of the Beliaev scattering process. The effects of the photon-loss dissipation channel and that of the Beliaev damping due to atom-atom collisions can be well separated. We show that the Beliaev process does not influence the properties of the self-organization criticality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا