Do you want to publish a course? Click here

Excitation mechanism of OI lines in Herbig Ae/Be stars

199   0   0.0 ( 0 )
 Added by Blesson Mathew
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the role of a few prominent excitation mechanisms viz. collisional excitation, recombination, continuum fluorescence and Lyman beta fluorescence on the OI line spectra in Herbig Ae/Be stars. The aim is to understand which of them is the central mechanism that explains the observed OI line strengths. The study is based on an analysis of the observed optical spectra of 62 Herbig Ae/Be stars and near-infrared spectra of 17 Herbig Ae/Be stars. The strong correlation observed between the line fluxes of OI $lambda$8446 and OI $lambda$11287, as well as a high positive correlation between the line strengths of OI $lambda$8446 and H$alpha$ suggest that Lyman beta fluorescence is the dominant excitation mechanism for the formation of OI emission lines in Herbig Ae/Be stars. Further, from an analysis of the emission line fluxes of OI $lambdalambda$7774, 8446, and comparing the line ratios with those predicted by theoretical models, we assessed the contribution of collisional excitation in the formation of OI emission lines.



rate research

Read More

We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred dipoles with polar magnetic field strengths of several hundred Gauss. A number of Herbig Ae/Be stars with detected magnetic fields have recently been observed with X-shooter in the visible and the near-IR, as well as with the high-resolution near-IR spectrograph CRIRES. These observations are of great importance to understand the relation between the magnetic field topology and the physics of the accretion flow and the accretion disk gas emission.
136 - Jorick S. Vink 2015
Accretion is the prime mode of star formation, but the exact mode has not yet been identified in the Herbig Ae/Be mass range. We provide evidence that the the maximum variation in mass-accretion rate is reached on a rotational timescale, which suggests that rotational modulation is the key to understanding mass accretion. We show how spectropolarimetry is uniquely capable of resolving the innermost (within 0.1 AU) regions between the star and the disk, allowing us to map the 3D geometry of the accreting gas, and test theories of angular momentum evolution. We present Monte Carlo line-emission simulations showing how one would observe changes in the polarisation properties on rotational timescales, as accretion columns come and go into our line of sight.
This work aims to derive accretion rates for a sample of 38 HAeBe stars. We apply magnetospheric accretion (MA) shock modelling to reproduce the observed Balmer excesses. We look for possible correlations with the strength of the Halpha, [OI]6300, and Brgamma emission lines. The median mass accretion rate is 2 x 10^-7 Msun yr^-1 in our sample. The model fails to reproduce the large Balmer excesses shown by the four hottest stars (T* > 12000 K). We derive Macc propto M*^5 and Lacc propto L*^1.2 for our sample, with scatter. Empirical calibrations relating the accretion and the Halpha, [OI]6300, and Brgamma luminosities are provided. The slopes in our expressions are slightly shallower than those for lower mass stars, but the difference is within the uncertainties, except for the [OI]6300 line. The Halpha 10% width is uncorrelated with Macc, unlike for the lower mass regime. The mean Halpha width shows higher values as the projected rotational velocities of HAe stars increase, which agrees with MA. The accretion rate variations in the sample are typically lower than 0.5 dex on timescales of days to months, Our data suggest that the changes in the Balmer excess are uncorrelated to the simultaneous changes of the line luminosities. The Balmer excesses and Halpha line widths of HAe stars can be interpreted within the context of MA, which is not the case for several HBes. The steep trend relating Macc and M* can be explained from the mass-age distribution characterizing HAeBe stars. The line luminosities used for low-mass objects are also valid to estimate typical accretion rates for the intermediate-mass regime under similar empirical expressions. However, we suggest that several of these calibrations are driven by the stellar luminosity.
116 - A. Carmona 2010
We present FEROS high-resolution (R~45000) optical spectroscopy of 34 Herbig Ae/Be star candidates with previously unknown or poorly constrained spectral types. Within the sample, 16 sources are positionally coincident with nearby (d<250 pc) star-forming regions (SFRs). All the candidates have IR excess. We determine the spectral type and luminosity class of the sources, derive their radial and rotational velocities, and constrain their distances employing spectroscopic parallaxes. We confirm 13 sources as Herbig Ae/Be stars and find one classical T Tauri star. Three sources are emission line early-type giants and may be Herbig Ae/Be stars. One source is a main-sequence A-type star. Fourteen sources are post-main-sequence giant and supergiant stars. Two sources are extreme emission-line stars. Most of the sources appear to be background stars at distances over 700 pc. We show that high-resolution optical spectroscopy is a crucial tool for distinguishing young stars from post-main sequence stars in samples taken from emission-line star catalogs based on low-resolution spectroscopy. Within the sample, 3 young stars (CD-38 4380, Hen 3-1145, and HD 145718) and one early-type luminosity class III giant with emission lines (Hen 3-416) are at distances closer than 300 pc and are positionally coincident with a nearby SFR. These 4 sources are likely to be nearby young stars and are interesting for follow-up observations at high-angular resolution. Furthermore, seven confirmed Herbig Ae/Be stars at d>700 pc (Hen 2-80, Hen 3-1121 N&S, HD 313571, MWC 953, WRAY 15-1435, and Th 17-35) are inside or close (<5) to regions with extended 8 micron continuum emission and in their 20 vicinity have astronomical sources characteristic of SFRs. These 7 sources are likely to be members of SFRs. These regions are attractive for future studies of their stellar content.
75 - Jorick S. Vink 2002
H_alpha spectropolarimetry on Herbig Ae/Be stars shows that the innermost regions of intermediate mass (2 -- 15 M_sun) Pre-Main Sequence stars are flattened. This may be the best evidence to date that the higher mass Herbig Be stars are embedded in circumstellar discs. A second outcome of our study is that the spectropolarimetric signatures for the lower mass Herbig Ae stars differ from those of the higher mass Herbig Be stars. Depolarisations across H_alpha are observed in the Herbig Be group, whereas line polarisations are common amongst the Herbig Ae stars in our sample. These line polarisation effects can be understood in terms of a compact H_alpha source that is polarised by a rotating disc-like configuration. The difference we detect between the Herbig Be and Ae stars may be the first indication that there is a transition in the Hertzsprung-Russell Diagram from magnetic accretion at spectral type A to disc accretion at spectral type B. However, it is also possible that the compact polarised line component, present in the Herbig Ae stars, is masked in the Herbig Be stars due to their higher levels of H_alpha emission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا