No Arabic abstract
The spectra of black hole binaries in the low/hard state are complex, with evidence for multiple different Comptonisation regions contributing to the hard X-rays in addition to a cool disc component. We show this explicitly for some of the best RXTE data from Cyg X-1, where the spectrum strongly requires (at least) two different Comptonisation components in order to fit the continuum above 3 keV, where the disc does not contribute. However, it is difficult to constrain the shapes of these Comptonisation components uniquely using spectral data alone. Instead, we show that additional information from fast variability can break this degeneracy. Specifically, we use the observed variability power spectra in each energy channel to reconstruct the energy spectra of the variability on timescales of ~10s, 1s and 0.1s. The two longer timescale spectra have similar shapes, but the fastest component is dramatically harder, and has strong curvature indicating that its seed photons are not from the cool disc. We interpret this in the context of propagating fluctuations through a hot flow, where the outer regions are cooler and optically thick, so that they shield the inner region from the disc. The seed photons for the hot inner region are then from the cooler Comptonisation region rather than the disc itself.
Currently available information on fast variability of the X-ray emission from accreting collapsed objects constitutes a complex phenomenology which is difficult to interpret. We review the current observational standpoint for black-hole binaries and survey models that have been proposed to interpret it. Despite the complex structure of the accretion flow, key observational diagnostics have been identified which can provide direct access to the dynamics of matter motions in the close vicinity of black holes and thus to the some of fundamental properties of curved spacetimes, where strong-field general relativistic effects can be observed.
Pulsar Timing Arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here we show that the detection of gravitational radiation from individually resolvable super-massive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave induced timing fluctuations both at the pulsar and at the Earth are detected. This in turn provides a map of the non-linear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of super-massive black holes. We discuss the potential, the challenges and the limitations of these observations.
In this paper we propose the model that the coalescence of primordial black holes (PBHs) binaries with equal mass $M sim 10^{28}$g can emit luminous gigahertz (GHz) radio transient, which may be candidate sources for the observed fast radio bursts (FRBs), if at least one black hole holds appropriate amount of net electric charge $Q$. Using a dimensionless quantity for the charge $q = Q/sqrt{G}M$, our analyses infer that $qsim O(10^{-4.5})$ can explain the FRBs with released energy of order $O(10^{40}) {rm ergs}$. With the current sample of FRBs and assuming a distribution of charge $phi(q)$ for all PBHs, we can deduce that its form is proportional to $q^{-3.0pm0.1}$ for $qgeq 7.2times10^{-5}$ if PBHs are sources of the observed FRBs. Furthermore, with the proposed hypothetical scenario and by estimating the local event rate of FRBs $sim 2.6 times 10^3 {rm Gpc}^{-3} {rm yr}^{-1}$, one derives a lower bound for the fraction of PBHs (at the mass of $10^{28}$g) against that of matter $f_{rm PBH}(10^{28}{rm g})$ $gtrsim 10^{-5}$ needed to explain the rate. With this inspiring estimate, we expect that future observations of FRBs can help to falsify their physical origins from the PBH binaries coalescences. In the future, the gravitational waves produced by mergers of small black holes can be detected by high frequency gravitational wave detectors. We believe that this work would be a useful addition to the current literature on multimessenger astronomy and cosmology.
Timing of high-count rate sources with the NuSTAR Small Explorer Mission requires specialized analysis techniques. NuSTAR was primarily designed for spectroscopic observations of sources with relatively low count-rates rather than for timing analysis of bright objects. The instrumental dead time per event is relatively long (~2.5 msec), and varies by a few percent event-to-event. The most obvious effect is a distortion of the white noise level in the power density spectrum (PDS) that cannot be modeled easily with the standard techniques due to the variable nature of the dead time. In this paper, we show that it is possible to exploit the presence of two completely independent focal planes and use the cross power density spectrum to obtain a good proxy of the white noise-subtracted PDS. Thereafter, one can use a Monte Carlo approach to estimate the remaining effects of dead time, namely a frequency-dependent modulation of the variance and a frequency-independent drop of the sensitivity to variability. In this way, most of the standard timing analysis can be performed, albeit with a sacrifice in signal to noise relative to what would be achieved using more standard techniques. We apply this technique to NuSTAR observations of the black hole binaries GX 339-4, Cyg X-1 and GRS 1915+105.
The nature and geometry of the accretion flow in the low/hard state of black hole binaries is currently controversial. While most properties are generally explained in the truncated disc/hot inner flow model, the detection of a broad residual around the iron line argues for strong relativistic effects from an untruncated disc. Since spectral fitting alone is somewhat degenerate, we combine it with the additional information in the fast X-ray variability and perform a full spectral-timing analysis for NICER and NuSTAR data on a bright low/hard state of MAXI J1820+070. For the first time, we model the variability with propagating mass accretion rate fluctuations by combining two separate current insights: that the hot flow is spectrally inhomogeneous, and that there is a discontinuous jump in viscous time-scale between the hot flow and variable disc. Our model naturally gives the double hump shape of the power spectra, and the increasing high frequency variability with energy in the second hump. Including reflection quantitatively reproduces the switch in the lag-frequency spectra, from hard lagging soft at low frequencies (propagation through the variable flow) to the soft lagging hard at the high frequencies (reverberation from the hard X-ray continuum illuminating the disc). The light travel time derived from the model corresponds to a distance of $sim$ 45 gravitational radii, supporting the truncated disc model geometry for the low/hard state. The propagation lags allow us to measure the viscous time-scale in the hot flow, and the results favour SANE rather than MAD models for this source.