Two-particle Greens functions and the vertex functions play a critical role in theoretical frameworks for describing strongly correlated electron systems. However, numerical calculations at two-particle level often suffer from large computation time and massive memory consumption. We derive a general expansion formula for the two-particle Greens functions in terms of an overcomplete representation based on the recently proposed intermediate representation basis. The expansion formula is obtained by decomposing the spectral representation of the two-particle Greens function. We demonstrate that the expansion coefficients decay exponentially, while all high-frequency and long-tail structures in the Matsubara-frequency domain are retained. This representation therefore enables efficient treatment of two-particle quantities and opens a route to the application of modern many-body theories to realistic strongly correlated electron systems.