Canonical metrics on holomorphic Courant algebroids


Abstract in English

The solution of the Calabi Conjecture by Yau implies that every Kahler Calabi-Yau manifold $X$ admits a metric with holonomy contained in $operatorname{SU}(n)$, and that these metrics are parametrized by the positive cone in $H^2(X,mathbb{R})$. In this work we give evidence of an extension of Yaus theorem to non-Kahler manifolds, where $X$ is replaced by a compact complex manifold with vanishing first Chern class endowed with a holomorphic Courant algebroid $Q$ of Bott-Chern type. The equations that define our notion of `best metric correspond to a mild generalization of the Hull-Strominger system, whereas the role of the second cohomology is played by an affine space of `Aeppli classes naturally associated to $Q$ via secondary holomorphic characteristic classes introduced by Donaldson

Download