Do you want to publish a course? Click here

Experimental Observation of Acoustic Weyl Points and Topological Surface States

150   0   0.0 ( 0 )
 Added by Ming-Hui Lu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Weyl points emerge as topological monopoles of Berry flux in the three-dimensional (3D) momentum space and have been extensively studied in topological semimetals. As the underlying topological principles apply to any type of waves under periodic boundary conditions, Weyl points can also be realized in classical wave systems, which are easier to engineer compared to condensed matter materials. Here, we made an acoustic Weyl phononic crystal by breaking space inversion (P) symmetry using a combination of slanted acoustic waveguides. We conducted angle-resolved transmission measurements to characterize the acoustic Weyl points. We also experimentally confirmed the existence of acoustic Fermi arcs and demonstrated robust one-way acoustic transport, where the surface waves can overcome a step barrier without reflection. This work lays a solid foundation for the basic research in 3D topological acoustic effects.



rate research

Read More

209 - Ling Lu , Zhiyu Wang , Dexin Ye 2015
In 1929, Hermann Weyl derived the massless solutions from the Dirac equation - the relativistic wave equation for electrons. Neutrinos were thought, for decades, to be Weyl fermions until the discovery of the neutrino mass. Moreover, it has been suggested that low energy excitations in condensed matter can be the solutions to the Weyl Hamiltonian. Recently, photons have also been proposed to emerge as Weyl particles inside photonic crystals. In all cases, two linear dispersion bands in the three-dimensional (3D) momentum space intersect at a single degenerate point - the Weyl point. Remarkably, these Weyl points are monopoles of Berry flux with topological charges defined by the Chern numbers. These topological invariants enable materials containing Weyl points to exhibit a wide variety of novel phenomena including surface Fermi arcs, chiral anomaly, negative magnetoresistance, nonlocal transport, quantum anomalous Hall effect, unconventional superconductivity[15] and others [16, 17]. Nevertheless, Weyl points are yet to be experimentally observed in nature. In this work, we report on precisely such an observation in an inversion-breaking 3D double-gyroid photonic crystal without breaking time-reversal symmetry.
Weyl fermions are hypothetical two-component massless relativistic particles in three-dimensional (3D) space, proposed by Hermann Weyl in 1929. Their band-crossing points, called Weyl points, carry a topological charge and are therefore highly robust. There has been much excitement over recent observations of Weyl points in microwave photonic crystals and the semimetal TaAs. Here, we report on the first experimental observation of Weyl points of light at optical frequencies. These are also the first observations of type-II Weyl points for photons, which have strictly positive group velocity along one spatial direction. We use a 3D structure consisting of laser-written waveguides, and show the presence of type-II Weyl points by (1) observing conical diffraction along one axis when the frequency is tuned to the Weyl point; and (2) observing the associated Fermi arc surface states. The realization of Weyl points at optical frequencies allow these novel electromagnetic modes to be further explored in the context of linear, nonlinear, and quantum optics.
95 - Y. C. Liu , V. Wang , J. B. Lin 2021
The Fermi arcs of topological surface states in the three-dimensional multi-Weyl semimetals on surfaces by a continuum model are investigated systematically. We calculated analytically the energy spectra and wave function for bulk quadratic- and cubic-Weyl semimetal with a single Weyl point. The Fermi arcs of topological surface states in Weyl semimetals with single- and double-pair Weyl points are investigated systematically. The evolution of the Fermi arcs of surface states variating with the boundary parameter is investigated and the topological Lifshitz phase transition of the Fermi arc connection is clearly demonstrated. Besides, the boundary condition for the double parallel flat boundary of Weyl semimetal is deduced with a Lagrangian formalism.
120 - Ke Deng , Guoliang Wan , Peng Deng 2016
Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed matter physics counterpart of relativisticWeyl fermion [13] originally introduced in high energy physics. The Weyl semimetal realized in the TaAs class features multiple Fermi arcs arising from topological surface states [10, 11, 14-16] and exhibits novel quantum phenomena, e.g., chiral anomaly induced negative mag-netoresistance [17-19] and possibly emergent supersymmetry [20]. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion [21], which does not have counterpart in high energy physics due to the breaking of Lorentz invariance, can emerge as topologically-protected touching between electron and hole pockets. Here, we report direct spectroscopic evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 [22-24]. The topological surface states are confirmed by directly observing the surface states using bulk-and surface-sensitive angle-resolved photoemission spectroscopy (ARPES), and the quasi-particle interference (QPI) pattern between the two putative Fermi arcs in scanning tunneling microscopy (STM). Our work establishes MoTe2 as the first experimental realization of type-II Weyl semimetal, and opens up new opportunities for probing novel phenomena such as exotic magneto-transport [21] in type-II Weyl semimetals.
Very recently, novel quasiparticles beyond those mimicking the elementary high-energy particles such as Dirac and Weyl fermions have attracted great interest in condensed matter physics and materials science1-9. Here we report the first experimental observation of the long-desired quadratic Weyl points10 by using a three-dimensional chiral metacrystal of sound waves. Markedly different from the newly observed unconventional quasiparticles5-9, such as the spin-1 Weyl points and the charge-2 Dirac points that are featured respectively with threefold and fourfold band crossings, the charge-2 Weyl points identified here are simply twofold degenerate, and the dispersions around them are quadratic in two directions and linear in the third one10. Besides the essential nonlinear bulk dispersions, we further unveil the exotic double-helicoid surface arcs that emanate from a projected quadratic Weyl point and terminate at two projected conventional Weyl points through Fourier transformation of the scanned surface fields. This unique global surface connectivity provides conclusive evidence for the double topological charges of such unconventional topological nodes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا