Do you want to publish a course? Click here

Switching of the Chiral Magnetic Domains in the Hybrid Multiferroic (ND4)2[FeCl5(D2O)]

91   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Neutron spherical polarimetry, which is directly sensitive to the absolute magnetic configuration and domain population, has been used in this work to unambiguously prove the multiferroicity of (ND4)2[FeCl5(D2O)]. We demonstrate that the application of an electric field upon cooling results in the stabilization of a single-cycloidal magnetic domain below 6.9 K, while poling in the opposite electric field direction produces the full population of the domain with opposite magnetic chirality. We prove the complete switchability of the magnetic domains at low temperature by the applied electric field, which constitutes a direct proof of the strong magnetoelectric coupling. Additionally, we refine the magnetic structure of the ordered ground state, determining the underlying magnetic space group consistent with the direction of the ferroelectric polarization, and we provide evidence of a collinear amplitude-modulated state with magnetic moments along the a-axis in the temperature region between 6.9 and 7.2 K.



rate research

Read More

Our results describe an unprecedented example of change in the mechanism of magnetically-induced electric polarization from spin current to spin-dependent p-d hybridization model. We have followed the evolution of the magnetic structures of (ND4)2[FeCl5 D2O] compound using single crystal neutron diffraction under external magnetic field. The spin arrangements change from incommensurate cycloidal to commensurate distorted-cycloidal and finally to quasi-collinear. The determination of the magnetic structures allows us to explain the observed electric polarization in the different ferroelectric phases. Two different magneto-electric coupling mechanisms are at play: the spin-current mechanism for external magnetic field below 5 T, and the spin dependent p-d hybridization mechanism for magnetic field above this value, being this compound the first example reported presenting this sequence of magneto-electric coupling mechanisms.
The number of magnetoelectric multiferroic materials reported to date is scarce, as magnetic structures that break inversion symmetry and induce an improper ferroelectric polarization typically arise through subtle competition between different magnetic interactions. The (NH4)2[FeCl5(H2O)] compound is a rare case where such improper ferroelectricity has been observed in a molecular material. We have used single crystal and powder neutron diffraction to obtain detailed solutions for the crystal and magnetic structures of (NH4)2[FeCl5(H2O)], from which we determined the mechanism of multiferroicity. From the crystal structure analysis, we observed an order-disorder phase transition related to the ordering of the ammonium counterion. We have determined the magnetic structure below TN, at 2K and zero magnetic field, which corresponds to a cycloidal spin arrangement with magnetic moments contained in the ac-plane, propagating parallel to the c-axis. The observed ferroelectricity can be explained, from the obtained magnetic structure, via the inverse Dzyaloshinskii-Moriya mechanism.
We report a comprehensive inelastic neutron scattering study of the hybrid molecule-based multiferroic compound (ND4)2FeCl5D2O in the zero-field incommensurate cycloidal phase and the high-field quasi-collinear phase. The spontaneous electric polarization changes its direction concurrently with the field-induced magnetic transition, from mostly aligned with the crystallographic a-axis to the c-axis. To account for such change of polarization direction, the underlying multiferroic mechanism was proposed to switch from the spin-current model induced via the inverse Dzyalloshinskii-Moriya interaction to the p-d hybridization model. We perform a detailed analysis of the inelastic neutron data of (ND4)2FeCl5D2O using linear spin-wave theory to quantify magnetic interaction strengths and investigate possible impact of different multiferroic mechanisms on the magnetic couplings. Our result reveals that the spin dynamics of both multiferroic phases can be well-described by a Heisenberg Hamiltonian with an easy-plane anisotropy. We do not find notable differences between the optimal model parameters of the two phases. The hierarchy of exchange couplings and the balance among frustrated interactions remain the same between two phases, suggesting that magnetic interactions in (ND4)2FeCl5D2O are much more robust than the electric polarization in response to delicate reorganizations of the electronic degrees of freedom in an applied magnetic field.
167 - D. Meier 2009
An investigation of the spatially resolved distribution of domains in the multiferroic phase of MnWO$_4$ reveals that characteristic features of magnetic and ferroelectric domains are inseparably entangled. Consequently, the concept of multiferroic hybrid domains is introduced for compounds in which ferroelectricity is induced by magnetic order. The three-dimensional structure of the domains is resolved. Annealing cycles reveal a topological memory effect that goes beyond previously reported memory effects and allows one to reconstruct the entire multiferroic multidomain structure subsequent to quenching it.
We employ neutron spherical polarimetry to determine the nature and population of the coexisting antiferromagnetic domains in multiferroic YMn2O5. By applying an electric field, we prove that reversing the electrical polarization results in the population inversion of two types of in-plane domains, related to each other by inversion. Our results are completely consistent with the exchange striction mechanism of ferroelectricity, and support a unified model where cycloidal ordering is induced by coupling to the main magnetic order parameter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا