Measurement of the lifetime of the $7s^2S_{1/2} $ state in atomic cesium using asynchronous gated detection


Abstract in English

We report a measurement of the lifetime of the cesium $7s,^2S_{1/2}$ state using time-correlated single-photon counting spectroscopy in a vapor cell. We excite the atoms using a Doppler-free two-photon transition from the $6s,^2S_{1/2}$ ground state, and detect the 1.47$mu$m photons from the spontaneous decay of the $7s,^2S_{1/2}$ to the $6p,^2P_{3/2}$ state. We use a gated single photon detector in an asynchronous mode, allowing us to capture the fluorescence profile for a window much larger than the detector gate length. Analysis of the exponential decay of the photon count yields a $7s,^2S_{1/2}$ lifetime of 48.28$pm$0.07ns, an uncertainty of 0.14%. These measurements provide sensitive tests of theoretical models of the Cs atom, which play a central role in parity violation measurements.

Download