Do you want to publish a course? Click here

Towards Cooperation in Sequential Prisoners Dilemmas: a Deep Multiagent Reinforcement Learning Approach

94   0   0.0 ( 0 )
 Added by Weixun Wang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The Iterated Prisoners Dilemma has guided research on social dilemmas for decades. However, it distinguishes between only two atomic actions: cooperate and defect. In real-world prisoners dilemmas, these choices are temporally extended and different strategies may correspond to sequences of actions, reflecting grades of cooperation. We introduce a Sequential Prisoners Dilemma (SPD) game to better capture the aforementioned characteristics. In this work, we propose a deep multiagent reinforcement learning approach that investigates the evolution of mutual cooperation in SPD games. Our approach consists of two phases. The first phase is offline: it synthesizes policies with different cooperation degrees and then trains a cooperation degree detection network. The second phase is online: an agent adaptively selects its policy based on the detected degree of opponent cooperation. The effectiveness of our approach is demonstrated in two representative SPD 2D games: the Apple-Pear game and the Fruit Gathering game. Experimental results show that our strategy can avoid being exploited by exploitative opponents and achieve cooperation with cooperative opponents.



rate research

Read More

To achieve general intelligence, agents must learn how to interact with others in a shared environment: this is the challenge of multiagent reinforcement learning (MARL). The simplest form is independent reinforcement learning (InRL), where each agent treats its experience as part of its (non-stationary) environment. In this paper, we first observe that policies learned using InRL can overfit to the other agents policies during training, failing to sufficiently generalize during execution. We introduce a new metric, joint-policy correlation, to quantify this effect. We describe an algorithm for general MARL, based on approximate best responses to mixtures of policies generated using deep reinforcement learning, and empirical game-theoretic analysis to compute meta-strategies for policy selection. The algorithm generalizes previous ones such as InRL, iterated best response, double oracle, and fictitious play. Then, we present a scalable implementation which reduces the memory requirement using decoupled meta-solvers. Finally, we demonstrate the generality of the resulting policies in two partially observable settings: gridworld coordination games and poker.
In social dilemma situations, individual rationality leads to sub-optimal group outcomes. Several human engagements can be modeled as a sequential (multi-step) social dilemmas. However, in contrast to humans, Deep Reinforcement Learning agents trained to optimize individual rewards in sequential social dilemmas converge to selfish, mutually harmful behavior. We introduce a status-quo loss (SQLoss) that encourages an agent to stick to the status quo, rather than repeatedly changing its policy. We show how agents trained with SQLoss evolve cooperative behavior in several social dilemma matrix games. To work with social dilemma games that have visual input, we propose GameDistill. GameDistill uses self-supervision and clustering to automatically extract cooperative and selfish policies from a social dilemma game. We combine GameDistill and SQLoss to show how agents evolve socially desirable cooperative behavior in the Coin Game.
Matrix games like Prisoners Dilemma have guided research on social dilemmas for decades. However, they necessarily treat the choice to cooperate or defect as an atomic action. In real-world social dilemmas these choices are temporally extended. Cooperativeness is a property that applies to policies, not elementary actions. We introduce sequential social dilemmas that share the mixed incentive structure of matrix game social dilemmas but also require agents to learn policies that implement their strategic intentions. We analyze the dynamics of policies learned by multiple self-interested independent learning agents, each using its own deep Q-network, on two Markov games we introduce here: 1. a fruit Gathering game and 2. a Wolfpack hunting game. We characterize how learned behavior in each domain changes as a function of environmental factors including resource abundance. Our experiments show how conflict can emerge from competition over shared resources and shed light on how the sequential nature of real world social dilemmas affects cooperation.
Many real-world applications involve teams of agents that have to coordinate their actions to reach a common goal against potential adversaries. This paper focuses on zero-sum games where a team of players faces an opponent, as is the case, for example, in Bridge, collusion in poker, and collusion in bidding. The possibility for the team members to communicate before gameplay---that is, coordinate their strategies ex ante---makes the use of behavioral strategies unsatisfactory. We introduce Soft Team Actor-Critic (STAC) as a solution to the teams coordination problem that does not require any prior domain knowledge. STAC allows team members to effectively exploit ex ante communication via exogenous signals that are shared among the team. STAC reaches near-optimal coordinated strategies both in perfectly observable and partially observable games, where previous deep RL algorithms fail to reach optimal coordinated behaviors.
128 - Yufei Ye , Xiaoqin Ren , Jin Wang 2018
With the rapid development of deep learning, deep reinforcement learning (DRL) began to appear in the field of resource scheduling in recent years. Based on the previous research on DRL in the literature, we introduce online resource scheduling algorithm DeepRM2 and the offline resource scheduling algorithm DeepRM_Off. Compared with the state-of-the-art DRL algorithm DeepRM and heuristic algorithms, our proposed algorithms have faster convergence speed and better scheduling efficiency with regarding to average slowdown time, job completion time and rewards.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا