Generalized Ultrastrong Optomechanics


Abstract in English

We propose a reliable scheme to realize a generalized ultrastrong optomechanical coupling in a two-mode cross-Kerr-type coupled system, where one of the bosonic modes is strongly driven. The effective optomechanical interaction takes the form of a product of the photon number operator of one mode and the quadrature operator of the other mode. The coupling strength and quadrature phase are both tunable via the driving field. The coupling strength can be strongly enhanced to reach the ultrastrong-coupling regime, where the few-photon optomechanical effects such as photon blockade and macroscopically distinct quantum superposition become accessible. The presence of tunable quadrature phase also enables the implementation of geometric quantum operations. Numerical simulations show that this method works well in a wide parameter space. We also present an analysis of the experimental implementation of this scheme.

Download