We utilized X-ray photoemission electron microscopy (XPEEM) and X-ray photoelectron spectroscopy (XPS) to investigate the crystal surface of Weyl semimetal NbAs. XPEEM images present white and black contrast in both the Nb 3d and As 3d core level spectra. Surface-sensitive XPS spectra indicate that the entire surface of the sample contains both surface states of Nb 3d and As 3d, in form of oxides, and bulk states of NbAs. Estimated atomic percentage values nNb/nAs suggest that the surface is Nb-rich and asymmetric for white and black areas.
We performed a series of high-pressure synchrotron X-ray diffraction (XRD) and resistance measurements on the Weyl semimetal NbAs. The crystal structure remains stable up to 26 GPa according to the powder XRD data. The resistance of NbAs single crystal increases monotonically with pressure at low temperature. Up to 20 GPa, no superconducting transition is observed down to 0.3 K. These results show that the Weyl semimetal phase is robust in NbAs, and applying pressure is not a good way to get a topological superconductor from a Weyl semimetal.
$mathrm{MoTe_2}$ has recently been shown to realize in its low-temperature phase the type-II Weyl semimetal (WSM). We investigated by time- and angle- resolved photoelectron spectroscopy (tr-ARPES) the possible influence of the Weyl points in the electron dynamics above the Fermi level $mathrm{E_F}$, by comparing the ultrafast response of $mathrm{MoTe_2}$ in the trivial and topological phases. In the low-temperature WSM phase, we report an enhanced relaxation rate of electrons optically excited to the conduction band, which we interpret as a fingerprint of the local gap closure when Weyl points form. By contrast, we find that the electron dynamics of the related compound $mathrm{WTe_2}$ is slower and temperature-independent, consistent with a topologically trivial nature of this material. Our results shows that tr-ARPES is sensitive to the small modifications of the unoccupied band structure accompanying the structural and topological phase transition of $mathrm{MoTe_2}$.
This work reports the measurement of magnetic dichroism in angular-resolved photoemission from in-plane magnetized buried thin films. The high bulk sensitivity of hard X-ray photoelectron spectroscopy (HAXPES) in combination with circularly polarized radiation enables the investigation of the magnetic properties of buried layers. HAXPES experiments with an excitation energy of 8 keV were performed on exchange-biased magnetic layers covered by thin oxide films. Two types of structures were investigated with the IrMn exchange-biasing layer either above or below the ferromagnetic layer: one with a CoFe layer on top and another with a Co$_2$FeAl layer buried beneath the IrMn layer. A pronounced magnetic dichroism is found in the Co and Fe $2p$ states of both materials. The localization of the magnetic moments at the Fe site conditioning the peculiar characteristics of the Co$_2$FeAl Heusler compound, predicted to be a half-metallic ferromagnet, is revealed from the magnetic dichroism detected in the Fe $2p$ states.
Surface Fermi arcs (SFAs), the unique open Fermi-surfaces (FSs) discovered recently in topological Weyl semimetals (TWSs), are unlike closed FSs in conventional materials and can give rise to many exotic phenomena, such as anomalous SFA-mediated quantum oscillations, chiral magnetic effects, three-dimensional quantum Hall effect, non-local voltage generation and anomalous electromagnetic wave transmission. Here, by using in-situ surface decoration, we demonstrate successful manipulation of the shape, size and even the connections of SFAs in a model TWS, NbAs, and observe their evolution that leads to an unusual topological Lifshitz transition not caused by the change of the carrier concentration. The phase transition teleports the SFAs between different parts of the surface Brillouin zone. Despite the dramatic surface evolution, the existence of SFAs is robust and each SFA remains tied to a pair of Weyl points of opposite chirality, as dictated by the bulk topology.
We have investigated the electronic structure of the dilute magnetic semiconductor (DMS) $Ga_{0.98}Mn_{0.02}P$ and compared it to that of an undoped $GaP$ reference sample, using hard X-ray photoelectron spectroscopy (HXPS) and hard X-ray angle-resolved photoemission spectroscopy (HARPES) at energies of about 3 keV. We present experimental data, as well as theoretical calculations, in order to understand the role of the Mn dopant in the emergence of ferromagnetism in this material. Both core-level spectra and angle-resolved or angle-integrated valence spectra are discussed. In particular, the HARPES experimental data are compared to free-electron final-state model calculations and to more accurate one-step photoemission theory. The experimental results show differences between $Ga_{0.98}Mn_{0.02}P$ and $GaP$ in both angle-resolved and angle-integrated valence spectra. The $Ga_{0.98}Mn_{0.02}P$ bands are broadened due to the presence of Mn impurities that disturb the long-range translational order of the host $GaP$ crystal. Mn-induced changes of the electronic structure are observed over the entire valence band range, including the presence of a distinct impurity band close to the valence-band maximum of the DMS. These experimental results are in good agreement with the one-step photoemission calculations, and a prior HARPES study of $Ga_{0.97}Mn_{0.03}As$ and $GaAs$ (Gray et al. Nature Materials 11, 957 (2012)), demonstrating the strong similarity between these two materials. The Mn 2p and 3s core-level spectra also reveal an essentially identical state in doping both $GaAs$ and $GaP$.