Do you want to publish a course? Click here

Meta Multi-Task Learning for Sequence Modeling

142   0   0.0 ( 0 )
 Added by Xipeng Qiu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Semantic composition functions have been playing a pivotal role in neural representation learning of text sequences. In spite of their success, most existing models suffer from the underfitting problem: they use the same shared compositional function on all the positions in the sequence, thereby lacking expressive power due to incapacity to capture the richness of compositionality. Besides, the composition functions of different tasks are independent and learned from scratch. In this paper, we propose a new sharing scheme of composition function across multiple tasks. Specifically, we use a shared meta-network to capture the meta-knowledge of semantic composition and generate the parameters of the task-specific semantic composition models. We conduct extensive experiments on two types of tasks, text classification and sequence tagging, which demonstrate the benefits of our approach. Besides, we show that the shared meta-knowledge learned by our proposed model can be regarded as off-the-shelf knowledge and easily transferred to new tasks.



rate research

Read More

Recent studies have shown that neural models can achieve high performance on several sequence labelling/tagging problems without the explicit use of linguistic features such as part-of-speech (POS) tags. These models are trained only using the character-level and the word embedding vectors as inputs. Others have shown that linguistic features can improve the performance of neural models on tasks such as chunking and named entity recognition (NER). However, the change in performance depends on the degree of semantic relatedness between the linguistic features and the target task; in some instances, linguistic features can have a negative impact on performance. This paper presents an approach to jointly learn these linguistic features along with the target sequence labelling tasks with a new multi-task learning (MTL) framework called Gated Tasks Interaction (GTI) network for solving multiple sequence tagging tasks. The GTI network exploits the relations between the multiple tasks via neural gate modules. These gate modules control the flow of information between the different tasks. Experiments on benchmark datasets for chunking and NER show that our framework outperforms other competitive baselines trained with and without external training resources.
Task 1 of the DSTC8-track1 challenge aims to develop an end-to-end multi-domain dialogue system to accomplish complex users goals under tourist information desk settings. This paper describes our submitted solution, Hierarchical Context Enhanced Dialogue System (HCEDS), for this task. The main motivation of our system is to comprehensively explore the potential of hierarchical context for sufficiently understanding complex dialogues. More specifically, we apply BERT to capture token-level information and employ the attention mechanism to capture sentence-level information. The results listed in the leaderboard show that our system achieves first place in automatic evaluation and the second place in human evaluation.
Tacotron-based end-to-end speech synthesis has shown remarkable voice quality. However, the rendering of prosody in the synthesized speech remains to be improved, especially for long sentences, where prosodic phrasing errors can occur frequently. In this paper, we extend the Tacotron-based speech synthesis framework to explicitly model the prosodic phrase breaks. We propose a multi-task learning scheme for Tacotron training, that optimizes the system to predict both Mel spectrum and phrase breaks. To our best knowledge, this is the first implementation of multi-task learning for Tacotron based TTS with a prosodic phrasing model. Experiments show that our proposed training scheme consistently improves the voice quality for both Chinese and Mongolian systems.
In several natural language tasks, labeled sequences are available in separate domains (say, languages), but the goal is to label sequences with mixed domain (such as code-switched text). Or, we may have available models for labeling whole passages (say, with sentiments), which we would like to exploit toward better position-specific label inference (say, target-dependent sentiment annotation). A key characteristic shared across such tasks is that different positions in a primary instance can benefit from different `experts trained from auxiliary data, but labeled primary instances are scarce, and labeling the best expert for each position entails unacceptable cognitive burden. We propose GITNet, a unified position-sensitive multi-task recurrent neural network (RNN) architecture for such applications. Auxiliary and primary tasks need not share training instances. Auxiliary RNNs are trained over auxiliary instances. A primary instance is also submitted to each auxiliary RNN, but their state sequences are gated and merged into a novel composite state sequence tailored to the primary inference task. Our approach is in sharp contrast to recent multi-task networks like the cross-stitch and sluice network, which do not control state transfer at such fine granularity. We demonstrate the superiority of GIRNet using three applications: sentiment classification of code-switched passages, part-of-speech tagging of code-switched text, and target position-sensitive annotation of sentiment in monolingual passages. In all cases, we establish new state-of-the-art performance beyond recent competitive baselines.
Generative modeling has recently shown great promise in computer vision, but it has mostly focused on synthesizing visually realistic images. In this paper, motivated by multi-task learning of shareable feature representations, we consider a novel problem of learning a shared generative model that is useful across various visual perception tasks. Correspondingly, we propose a general multi-task oriented generative modeling (MGM) framework, by coupling a discriminative multi-task network with a generative network. While it is challenging to synthesize both RGB images and pixel-level annotations in multi-task scenarios, our framework enables us to use synthesized images paired with only weak annotations (i.e., image-level scene labels) to facilitate multiple visual tasks. Experimental evaluation on challenging multi-task benchmarks, including NYUv2 and Taskonomy, demonstrates that our MGM framework improves the performance of all the tasks by large margins, consistently outperforming state-of-the-art multi-task approaches.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا