Do you want to publish a course? Click here

Shortcut loading atoms into an optical lattice

191   0   0.0 ( 0 )
 Added by Xiaoji Zhou
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an effective and fast (few microseconds) procedure for transferring ultra-cold atoms from the ground state in a harmonic trap into the desired bands of an optical lattice. Our shortcut method is a designed pulse sequence where the time duration and the interval in each step are fully optimized in order to maximize robustness and fidelity of the final state with respect to the target state. The atoms can be prepared in a single band with even or odd parity, and superposition states of different bands can be prepared and manipulated. Furthermore, we extend this idea to the case of two-dimensional or three-dimensional optical lattices where the energies of excited states are degenerate. We experimentally demonstrate various examples and show very good agreement with the theoretical model. Efficient shortcut methods will find applications in the preparation of quantum systems, in quantum information processing, in precise measurement and as a starting point to investigate dynamics in excited bands.



rate research

Read More

131 - C. Y. Yang , P. Halder , O. Appel 2007
We demonstrate an efficient scheme for continuous trap loading based upon spatially selective optical pumping. We discuss the case of $^{1}$S$_{0}$ calcium atoms in an optical dipole trap (ODT), however, similar strategies should be applicable to a wide range of atomic species. Our starting point is a reservoir of moderately cold ($approx 300 mu$K) metastable $^{3}$P$_{2}$-atoms prepared by means of a magneto-optic trap (triplet-MOT). A focused 532 nm laser beam produces a strongly elongated optical potential for $^{1}$S$_{0}$-atoms with up to 350 $mu$K well depth. A weak focused laser beam at 430 nm, carefully superimposed upon the ODT beam, selectively pumps the $^{3}$P$_{2}$-atoms inside the capture volume to the singlet state, where they are confined by the ODT. The triplet-MOT perpetually refills the capture volume with $^{3}$P$_{2}$-atoms thus providing a continuous stream of cold atoms into the ODT at a rate of $10^7 $s$^{-1}$. Limited by evaporation loss, in 200 ms we typically load $5 times 10^5$ atoms with an initial radial temperature of 85 $mu$K. After terminating the loading we observe evaporation during 50 ms leaving us with $10^5$ atoms at radial temperatures close to 40 $mu$K and a peak phase space density of $6.8 times 10^{-5}$. We point out that a comparable scheme could be employed to load a dipole trap with $^{3}$P$_{0}$-atoms.
The multichannel Na-Cs interactions are characterized by a series of measurements using two atoms in an optical tweezer, along with a multichannel quantum defect theory (MQDT). The triplet and singlet scattering lengths are measured by performing Raman spectroscopy of the Na-Cs motional states and least-bound molecular state in the tweezer. Magnetic Feshbach resonances are observed for only two atoms at fields which agree well with the MQDT. Our methodology, which promotes the idea of an effective theory of interaction, can be a key step towards the understanding and the description of more complex interactions. The tweezer-based measurements in particular will be an important tool for atom-molecule and molecule-molecule interactions, where high densities are experimentally challenging and where the interactions can be dominated by intra-species processes.
Recently, we have experimentally demonstrated a continuous loading mechanism for an optical dipole trap from a guided atomic beam [1]. The observed evolution of the number of atoms and temperature in the trap are consequences of the unusual trap geometry. In the present paper, we develop a model based on a set of rate equations to describe the loading dynamics of such a mechanism. We consider the collision statistics in the non-uniform trap potential that leads to twodimensional evaporation. The comparison between the resulting computations and experimental data allows to identify the dominant loss process and suggests ways to enhance the achievable steady-state atom number. Concerning subsequent evaporative cooling, we find that the possibility of controlling axial and radial confinement independently allows faster evaporation ramps compared to single beam optical dipole traps.
125 - S. Rosi , A. Bernard , N. Fabbri 2013
We present experimental evidence of the successful closed-loop optimization of the dynamics of cold atoms in an optical lattice. We optimize the loading of an ultracold atomic gas minimizing the excitations in an array of one-dimensional tubes (3D-1D crossover) and we perform an optimal crossing of the quantum phase-transition from a Superfluid to a Mott-Insulator in a three-dimensional lattice. In both cases we enhance the experiment performances with respect to those obtained via adiabatic dynamics, effectively speeding up the process by more than a factor three while improving the quality of the desired transformation.
We report on the realization of a magneto-optical trap (MOT) for metastable strontium operating on the 2.92 $mu$m transition between the energy levels $5s5p~^3mathrm{P}_2$ and $5s4d~^3mathrm{D}_3$. The strontium atoms are initially captured in a MOT operating on the 461 nm transition between the energy levels $5s^2~^1mathrm{S}_0$ and $5s5p~^1mathrm{P}_1$, prior to being transferred into the metastable MOT and cooled to a final temperature of 6 $mu$K. Challenges arising from aligning the mid-infrared and 461 nm light are mitigated by employing the same pyramid reflector to realize both MOTs. Finally, the 2.92 $mu$m transition is used to realize a full cooling sequence for an optical lattice clock, in which cold samples of $^{87}mathrm{Sr}$ are loaded into a magic-wavelength optical lattice and initialized in a spin-polarized state to allow high-precision spectroscopy of the $5s^2~^1mathrm{S}_0$ to $5s5p~^3mathrm{P}_0$ clock transition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا