Do you want to publish a course? Click here

Adversarial vulnerability for any classifier

97   0   0.0 ( 0 )
 Added by Alhussein Fawzi
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Despite achieving impressive performance, state-of-the-art classifiers remain highly vulnerable to small, imperceptible, adversarial perturbations. This vulnerability has proven empirically to be very intricate to address. In this paper, we study the phenomenon of adversarial perturbations under the assumption that the data is generated with a smooth generative model. We derive fundamental upper bounds on the robustness to perturbations of any classification function, and prove the existence of adversarial perturbations that transfer well across different classifiers with small risk. Our analysis of the robustness also provides insights onto key properties of generative models, such as their smoothness and dimensionality of latent space. We conclude with numerical experimental results showing that our bounds provide informative baselines to the maximal achievable robustness on several datasets.



rate research

Read More

Machine learning models, especially neural network (NN) classifiers, are widely used in many applications including natural language processing, computer vision and cybersecurity. They provide high accuracy under the assumption of attack-free scenarios. However, this assumption has been defied by the introduction of adversarial examples -- carefully perturbed samples of input that are usually misclassified. Many researchers have tried to develop a defense against adversarial examples; however, we are still far from achieving that goal. In this paper, we design a Generative Adversarial Net (GAN) based adversarial training defense, dubbed GanDef, which utilizes a competition game to regulate the feature selection during the training. We analytically show that GanDef can train a classifier so it can defend against adversarial examples. Through extensive evaluation on different white-box adversarial examples, the classifier trained by GanDef shows the same level of test accuracy as those trained by state-of-the-art adversarial training defenses. More importantly, GanDef-Comb, a variant of GanDef, could utilize the discriminator to achieve a dynamic trade-off between correctly classifying original and adversarial examples. As a result, it achieves the highest overall test accuracy when the ratio of adversarial examples exceeds 41.7%.
The adversarial patch attack against image classification models aims to inject adversarially crafted pixels within a localized restricted image region (i.e., a patch) for inducing model misclassification. This attack can be realized in the physical world by printing and attaching the patch to the victim object and thus imposes a real-world threat to computer vision systems. To counter this threat, we propose PatchCleanser as a certifiably robust defense against adversarial patches that is compatible with any image classifier. In PatchCleanser, we perform two rounds of pixel masking on the input image to neutralize the effect of the adversarial patch. In the first round of masking, we apply a set of carefully generated masks to the input image and evaluate the model prediction on every masked image. If model predictions on all one-masked images reach a unanimous agreement, we output the agreed prediction label. Otherwise, we perform a second round of masking to settle the disagreement, in which we evaluate model predictions on two-masked images to robustly recover the correct prediction label. Notably, we can prove that our defense will always make correct predictions on certain images against any adaptive white-box attacker within our threat model, achieving certified robustness. We extensively evaluate our defense on the ImageNet, ImageNette, CIFAR-10, CIFAR-100, SVHN, and Flowers-102 datasets and demonstrate that our defense achieves similar clean accuracy as state-of-the-art classification models and also significantly improves certified robustness from prior works. Notably, our defense can achieve 83.8% top-1 clean accuracy and 60.4% top-1 certified robust accuracy against a 2%-pixel square patch anywhere on the 1000-class ImageNet dataset.
Adversarial training, in which a network is trained on adversarial examples, is one of the few defenses against adversarial attacks that withstands strong attacks. Unfortunately, the high cost of generating strong adversarial examples makes standard adversarial training impractical on large-scale problems like ImageNet. We present an algorithm that eliminates the overhead cost of generating adversarial examples by recycling the gradient information computed when updating model parameters. Our free adversarial training algorithm achieves comparable robustness to PGD adversarial training on the CIFAR-10 and CIFAR-100 datasets at negligible additional cost compared to natural training, and can be 7 to 30 times faster than other strong adversarial training methods. Using a single workstation with 4 P100 GPUs and 2 days of runtime, we can train a robust model for the large-scale ImageNet classification task that maintains 40% accuracy against PGD attacks. The code is available at https://github.com/ashafahi/free_adv_train.
Deep networks are well-known to be fragile to adversarial attacks. We conduct an empirical analysis of deep representations under the state-of-the-art attack method called PGD, and find that the attack causes the internal representation to shift closer to the false class. Motivated by this observation, we propose to regularize the representation space under attack with metric learning to produce more robust classifiers. By carefully sampling examples for metric learning, our learned representation not only increases robustness, but also detects previously unseen adversarial samples. Quantitative experiments show improvement of robustness accuracy by up to 4% and detection efficiency by up to 6% according to Area Under Curve score over prior work. The code of our work is available at https://github.com/columbia/Metric_Learning_Adversarial_Robustness.
Deep neural networks (DNNs) are playing key roles in various artificial intelligence applications such as image classification and object recognition. However, a growing number of studies have shown that there exist adversarial examples in DNNs, which are almost imperceptibly different from original samples, but can greatly change the network output. Existing white-box attack algorithms can generate powerful adversarial examples. Nevertheless, most of the algorithms concentrate on how to iteratively make the best use of gradients to improve adversarial performance. In contrast, in this paper, we focus on the properties of the widely-used ReLU activation function, and discover that there exist two phenomena (i.e., wrong blocking and over transmission) misleading the calculation of gradients in ReLU during the backpropagation. Both issues enlarge the difference between the predicted changes of the loss function from gradient and corresponding actual changes, and mislead the gradients which results in larger perturbations. Therefore, we propose a universal adversarial example generation method, called ADV-ReLU, to enhance the performance of gradient based white-box attack algorithms. During the backpropagation of the network, our approach calculates the gradient of the loss function versus network input, maps the values to scores, and selects a part of them to update the misleading gradients. Comprehensive experimental results on emph{ImageNet} demonstrate that our ADV-ReLU can be easily integrated into many state-of-the-art gradient-based white-box attack algorithms, as well as transferred to black-box attack attackers, to further decrease perturbations in the ${ell _2}$-norm.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا