Note on the reflectance of mirrors exposed to a strontium beam


Abstract in English

The high chemical reactivity of strontium, which can opacify a viewport exposed to a strontium atomic source, is a concern for some atomic physics experiments where it is sometimes necessary to send a laser beam counter-propagating relative to the atomic beam. While a number of experiments use heated sapphire windows to reduce strontium deposition and increase the viewport lifetime, here we study another possibility, consisting of sending the laser beam into the atomic flux by reflecting it off a mirror at 45$^{circ}$ exposed to the strontium flux. We present our attempt to find a substrate that can be exposed to strontium and maintain high reflectivity. We first present the formation of a strontium metallic mirror under high flux ($> 10^{13}$ at/s/cm$^2$) on a sapphire substrate, and measure its reflectivity at 45$^circ$ to be 0.65 (S) and 0.51 (P). On two other substrates, initially reflective metallic mirrors, we show for slightly lower fluxes (i.e., a factor of 3) that some reaction - most probably oxidation - is able to prevent the formation of the metallic layer even in high vacuum conditions. Instead, we observe the growth of a dielectric transparent medium. Despite the continuous deposition of strontium, the back surface reflectivity continues to dominate. We show the unusual evolution of reflectivity on these substrates, and emphasize two observations: i) a sharp threshold in the strontium flux separating transparent material growth from lossy material growth; ii) strontiums highly efficient capture of oxygen, even from rarefied sources: here mostly the residual high vacuum pressure (10$^{-7}$mbar full pressure) and possibly a protective SiO$_2$ surface on one of the substrates.

Download