Do you want to publish a course? Click here

Using first-principles calculations to screen for fragile magnetism: Case study of LaCrGe3 and LaCrSb3

235   0   0.0 ( 0 )
 Added by Manh Cuong Nguyen
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we present a coupled experimental/theoretical investigation of pressure effect on the ferromagnetism of LaCrGe3 and LaCrSb3 compounds. The magnetic, electronic, elastic and mechanical properties of LaCrGe3 and LaCrSb3 at ambient condition are studied by first-principles density functional theory calculations. The pressure dependences of the magnetic properties of LaCrGe3 and LaCrSb3 are also investigated. The ferromagnetism in LaCrGe3 is rather fragile with a ferro- to paramagnetic transition at a relatively small pressure (around 7 GPa from our calculations, and 2 GPa in experiments). The key parameter controlling the magnetic properties of LaCrGe3 is found to be the proximity of the Cr DOS to the Fermi surface, a proximity that is strongly correlated to the distance between Cr atoms along the c-axis, suggesting that there would be a simple way to suppress magnetism in systems with one dimensional arrangement of magnetic atoms. By contrast, the ferromagnetism in LaCrSb3 is not fragile. Our calculation results are consistent with our experimental results and demonstrate the feasibility of using first-principles calculations to aid experimental explorations in screening for materials with fragile magnetism.



rate research

Read More

Recent x-ray absorption experiments have demonstrated the possibility to accurately monitor the magnetism of metallic hetero-structures controlled via a time-independent perturbation caused for example by a static electric field. Using a first-principles, non-equilibrium Green function scheme, we show how the measured dichroic signal for the corresponding steady-state situation can be related to the underlying electronic structure and its response to the external stimulus. The suggested approach works from the infinitesimal limit of linear response to the regime of strong electric field effects, which is realized in present experimental high sensitivity investigations.
We report first principles calculations of the structural, electronic, elastic and vibrational properties of the semiconducting orthorhombic ZnSb compound. We study also the intrinsic point defects in order to eventually improve the thermoelectric properties of this already very promising thermoelectric material. Concerning the electronic properties, in addition to the band structure, we show that the Zn (Sb) crystallographically equivalent atoms are not exactly equivalent from the electronic point of view. Lattice dynamics, elastic and thermodynamic properties are found to be in good agreement with experiments and they confirm the non equivalency of the zinc and antimony atoms from the vibrational point of view. The calculated elastic properties show a relatively weak anisotropy and the hardest direction is the y direction. We observe the presence of low energy modes involving both Zn and Sb atoms at about 5-6 meV, similarly to what has been found in Zn4Sb3 and we suggest that the interactions of these modes with acoustic phonons could explain the relatively low thermal conductivity of ZnSb. Zinc vacancies are the most stable defects and this explains the intrinsic p-type conductivity of ZnSb.
227 - M. X. Chen , Z. Zhong , M. Weinert 2015
We propose a guideline for exploring substrates that stabilize the monolayer honeycomb structure of silicene and germanene while simultaneously preserve the Dirac states: in addition to have a strong binding energy to the monolayer, a suitable substrate should be a large-gap semiconductor with a proper workfunction such that the Dirac point lies in the gap and far from the substrate states when their bands align. We illustrate our idea by performing first-principles calculations for silicene and germanene on the Al-terminated (0001) surface of Al2O3 . The overlaid monolayers on Al-terminated Al2O3(0001) retain the main structural profile of the low-buckled honeycomb structure via a binding energy comparable to the one between silicene and Ag(111). Unfolded band structure derived from the k-projection method reveals that gapped Dirac cone is formed at the K point due to the structural distortion and the interaction with the substrate. The gaps of 0.4 eV and 0.3 eV respectively for the supported silicene and germanene suggest that they may have potential applications in nanoelectronics.
Localized Wannier functions provide an efficient and intuitive framework to compute electric polarization from first-principles. They can also be used to represent the electronic systems at fixed electric field and to determine dielectric properties of insulating materials. Here we develop a Wannier-function-based formalism to perform first-principles calculations at fixed polarization. Such an approach allows to extract the polarization-energy landscape of a crystal and thus supports the theoretical investigation of polar materials. To facilitate the calculations, we implement a quasi-Newton method that simultaneously relaxes the internal coordinates and adjusts the electric field in crystals at fixed polarization. The method is applied to study the ferroelectric behavior of $mathrm{BaTiO_3}$ and $mathrm{PbTiO_3}$ in tetragonal phases. The physical processes driving the ferroelectricity of both compounds are examined thanks to the localized orbital picture offered by Wannier functions. Hence, changes in chemical bonding under ferroelectric distortion can be accurately visualized. The difference in the ferroelectric properties of $mathrm{BaTiO_3}$ and $mathrm{PbTiO_3}$ is highlighted. It can be traced back to the peculiarities of their electronic structures.
The light elemental solutes B, C, N, and O can penetrate the surface of Mg alloys and diffuse during heat treatment or high temperature application, forming undesirable compounds. We investigate the diffusion of these solutes by determining their stable interstitial sites and the inter-penetrating network formed by these sites. We use density functional theory (DFT) to calculate the site energies, migration barriers, and attempt frequencies for these networks to inform our analytical model for bulk diffusion. Due to the nature of the networks, O diffuses isotropically, while B, C, and N diffuse anisotropically. We compute the elastodiffusion tensor which quantifies changes in diffusivity due to small strains that perturb the diffusion network geometry and the migration barriers. The DFT-computed elastic dipole tensor which quantifies the change in site energies and migration barriers due to small strains is used as an input to determine the elastodiffusion tensor. We employ the elastodiffusion tensor to determine the effect of thermal strains on interstitial diffusion and find that B, C, and N diffusivity increases on crystal expansion, while O diffusivity decreases. From the elastodiffusion and compliance tensors we calculate the activation volume of diffusion and find that it is positive and anisotropic for B, C and N diffusion, whereas it is negative and isotropic for O diffusion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا