No Arabic abstract
We study a generalization of the Wigner function to arbitrary tuples of hermitian operators. We show that for any collection of hermitian operators A1...An , and any quantum state there is a unique joint distribution on R^n, with the property that the marginals of all linear combinations of the operators coincide with their quantum counterpart. In other words, we consider the inverse Radon transform of the exact quantum probability distributions of all linear combinations. We call it the Wigner distribution, because for position and momentum this property defines the standard Wigner function. We discuss the application to finite dimensional systems, establish many basic properties and illustrate these by examples. The properties include the support, the location of singularities, positivity, the behavior under symmetry groups, and informational completeness.
We formulate uncertainty relations for arbitrary $N$ observables. Two uncertainty inequalities are presented in terms of the sum of variances and standard deviations, respectively. The lower bounds of the corresponding sum uncertainty relations are explicitly derived. These bounds are shown to be tighter than the ones such as derived from the uncertainty inequality for two observables [Phys. Rev. Lett. 113, 260401 (2014)]. Detailed examples are presented to compare among our results with some existing ones.
We study a generalization of the Wigner function to arbitrary tuples of hermitian operators, which is a distribution uniquely characterized by the property that the marginals for all linear combinations of the given operators agree with the quantum mechanical distributions. Its role as a joint quasi-probability distribution is underlined by the property that its support always lies in the set of expectation value tuples of the operators. We characterize the set of singularities and positivity, and provide some basic examples.
A mapping between operators on the Hilbert space of $N$-dimensional quantum system and the Wigner quasiprobability distributions defined on the symplectic flag manifold is discussed. The Wigner quasiprobability distribution is constructed as a dual pairing between the density matrix and the Stratonovich-Weyl kernel. It is shown that the moduli space of the Stratonovich-Weyl kernel is given by an intersection of the coadjoint orbit space of the $SU(N)$ group and a unit $(N-2)$-dimensional sphere. The general consideration is exemplified by a detailed description of the moduli space of 2, 3 and 4-dimensional systems.
We investigate the Wigner rotation for photons, which governs the change in the polarization of the photon as it propagates through an arbitrary gravitational field. We give explicit examples in Schwarzschild spacetime, and compare with the corresponding flat spacetime results, which by the equivalence principle, holds locally at each spacetime point. We discuss the implications of the Wigner rotation for entangled photon states in curved spacetime, and lastly develop a sufficient condition for special (Fermi-Walker) frames in which the observer would detect no Wigner rotation.
Here we present an expanded analysis of a model for the manipulation and control of observables in a strongly correlated, many-body system, which was first presented in [McCaul et al., eprint: arXiv:1911.05006]. A field-free, non-linear equation of motion for controlling the expectation value of an essentially arbitrary observable is derived, together with rigorous constraints that determine the limits of controllability. We show that these constraints arise from the physically reasonable assumptions that the system will undergo unitary time evolution, and has enough degrees of freedom for the electrons to be mobile. Furthermore, we give examples of multiple solutions to generating target observable trajectories when the constraints are violated. Ehrenfest theorems are used to further refine the model, and provide a check on the validity of numerical simulations. Finally, the experimental feasibility of implementing the control fields generated by this model is discussed.