No Arabic abstract
We have measured the intensity and spectra of the cosmic ray secondary isotopes 2H and 3He and the primary isotopes H and 4He between 20-85 MeV/nuc during a 5 year time period after Voyager 1 (V1) crossed the heliopause. The data reported here is from the B-end high energy telescope. The ratios of the intensities of the secondary to primary spectra of these nuclei at low energies are sensitive indicators for determining the amount of matter traversed at these energies by their galactic cosmic ray progenitor nuclei, after acceleration, in this case mostly 4He nuclei. The measurements of secondary 3He abundances indicate that cosmic ray 4He of energies between 30-100 MeV/nuc have traversed between 7-9 g/cm2 of interstellar matter (90% H, 10% He) in a Leaky Box propagation model. This path length is also consistent with the production of secondary 2H nuclei between 20-50 MeV/nuc, which is also produced mainly by 4He in a LBM. The Boron abundance, studied in separate papers, is also consistent with this path length at energies >30 MeV/nuc. These secondary intensities imply that the interstellar cosmic ray path length may be described in a LBM in a manner consistent with a mean path length,gamma= 20.6 beta P-0.45 at rigidities above ~0.5 GV (30 MeV/nuc for A/Z=2 nuclei). Both 2H and Boron have an excess intensity vs. the predictions for path lengths of 9 g/cm2 below 30 MeV/nuc.
Using Leaky Box Model propagation calculations for H nuclei and a Monte Carlo diffusion propagation model for electrons, starting from specific source spectra, we have matched the observed LIS spectra of these cosmic rays measured by Voyager at lower energies and AMS-2 at higher energies, a range from ~10 MeV to ~1 TeV. The source spectra required are very similar rigidity spectra. Below ~6-10 GV the source spectra for both particles are ~P-2.25 and above 10 GV the spectra are ~P-2.36-2.40. This break in the source spectral index is not seen for He and C nuclei in a match of Voyager and AMS-2 intensities both of which have source rigidity spectra with an index ~-2.24 throughout the entire range of measured energies from ~10 MeV//nuc to ~1 TeV/nuc. The absolute source intensities of electrons and H nuclei are derived and the source ratio of accelerated electrons to H nuclei is between 2-5%. The total number of accelerated electrons is much greater than that for protons, however, because the accelerated electron spectrum extends down to ~1-2 MV rigidity whereas the H nuclei spectrum cannot be observed below ~50-100 MV because of ionization energy loss. Most of these low energy electrons escape from the galaxy forming an intergalactic background.
We have used new measurements of the B/C ratio in galactic cosmic rays at both low and high energies by the Voyager and AMS-2 spacecraft, respectively, along with propagation calculations using a truncated LBM to examine the implications of these new measurements over an extended energy range from a few MeV/nuc to 1 TeV/nuc. We find that the predictions from both the truncated LBM and the Diffusive Reacceleration model for GALPROP both agree with the Voyager and AMS-2 measurements of the B/C ratio to within +/- 10 percent throughout the entire energy range from 50 MeV/nuc to 1 TeV/nuc. The two propagation approaches also agree with each other to within +/-10 percent or less throughout this energy range. In effect a diffusion model, without significant additional acceleration, provides a match within +/-10 percent to the combined data from Voyager 1 and AMS-2 on the B/C ratio from 50 MeV/nuc to 1 TeV/nuc. The B/C ratio below 50 MeV/nuc measured at V1 exceeds the predictions of both propagation models by as much as 3 sigma in the data measurement errors.
This paper determines the relative source spectra of cosmic ray H and He nuclei using a Leaky Box model for galactic propagation and the observed spectra of these nuclei from ~10 MeV/nuc to ~1 TeV/nuc. The observations consist of Voyager 1 measurements up to several hundred MeV/nuc in local interstellar space and measurements above ~10 GeV/nuc where solar modulation effects are small by experiments on BESS, PAMELA and AMS-2. Using BESS and PAMELA measurements which agree with each other, the observed spectra for H and He nuclei and the H/He ratio are well fit by source rigidity spectra for both nuclei which are ~P-2.24 over the entire range of rigidities corresponding to energies between 10 MeV/nuc and several hundred GeV/nuc. In this case, the H/He rigidity source ratio is 5.0 + 1. The recent and presumably more accurate measurements of these spectra above 10 GeV/nuc made by AMS-2 do not entirely agree with the earlier measurements, however. In particular the H spectrum is found to be steeper than that of He by about 0.10 in the spectral exponent. Using the same model for galactic propagation the AMS-2 data leads to source spectra of H and He which are ~P-2.24 up to a break rigidity ~6-8 GV. At higher rigidities the He source spectrum continues to be ~P-2.24 but the required source spectrum for H steepens to an index ~P-2.36 above ~8 GV and, as a result, the H/He source ratio decreases with increasing rigidity using the AMS-2 data.
After the disappearance of lower energy heliospheric particles at Voyager 1 starting on August 25th, 2012, spectra of H, He and C/O nuclei were revealed that resembled those to be expected for galactic cosmic rays. These spectra had intensity peaks in the range of 30-60 MeV, decreasing at both lower energies down to a few MeV and at higher energies up to several hundred MeV. We have modeled the propagation of these particles in the galaxy using an updated Leaky Box Diffusion model which determines the spectra of these components from ~2 MeV to >200 GeV. The key parameters used in the model are a galactic input spectrum ~P^-2.24, the same for all components and independent of rigidity, and a diffusion coefficient that is ~P^0.5 above a lower rigidity and increases ~beta^-1.0 below a lower rigidity ~0.56 GV. These same parameters also fit the high energy H and He data from ~10-200 GeV/nuc from the PAMELA and BESS experiments. The new Voyager spectra for all three nuclei are thus consistent with rigidity spectra ~P^-2.24 from the lowest energies to at least 100 GeV. Deviations from this spectrum can reasonably be attributed to propagation effects. Some deviations between the calculated and newly observed spectra are noted, however, below ~30 MeV/nuc, particularly for C/O nuclei, that could be significant regarding the propagation and sources of these particles.
Studies on Voyager 1 using the CRS instrument have shown the presence of sub-MeV electrons in the interstellar medium beyond the heliopause. We believe that these electrons are the very low energy tail of the distribution of galactic GeV cosmic ray electrons produced in the galaxy. If so this observation places constraints on the origin and possible source distribution of these electrons in the galaxy. The intensities of these electrons as well as MeV protons and other higher energy electrons and nuclei have been followed outward from the Earth to beyond the heliopause during the 40 years of the Voyager mission. Among the other new features found in this study of the radial dependence of the electron intensity in the heliosphere are: 1. The heliosheath is a source of sub-MeV electrons as well as the already known anomalous cosmic rays of MeV and above, none of which appear to escape from the heliosphere because of an almost impenetrable heliopause at these lower energies; 2. Solar modulation effects are observed for these MeV electrons throughout the heliosphere. These modulation effects are particularly strong for electrons in the heliosheath and comprise over 90 percent of the observed intensity change of these electrons of 10-60 MeV between the Earth and the heliopause. Even for nuclei of 1 GV in rigidity, over 30 percent of the total intensity difference between the Earth and the LIM occurs in the heliosheath; 3. The 2 MeV protons studied here for the first time beyond the heliopause are also part of the low energy tail of the spectrum of galactic cosmic ray protons, similar to the tail noted above for sub MeV galactic cosmic ray electrons.