Do you want to publish a course? Click here

Surfing its own wave: hydroelasticity of a particle near a membrane

284   0   0.0 ( 0 )
 Added by Naomi Oppenheimer
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show using theory and experiments that a small particle moving along an elastic membrane through a viscous fluid is repelled from the membrane due to hydro-elastic forces. The viscous stress field produces an elastic disturbance leading to particle-wave coupling. We derive an analytic expression for the particle trajectory in the lubrication limit, bypassing the construction of the detailed velocity and pressure fields. The normal force is quadratic in the parallel speed, and is a function of the tension and bending resistance of the membrane. Experimentally, we measure the normal displacement of spheres sedimenting along an elastic membrane and find quantitative agreement with the theoretical predictions with no fitting parameters. We experimentally demonstrate the effect to be strong enough for particle separation and sorting. We discuss the significance of these results for bio-membranes and propose our model for membrane elasticity measurements.

rate research

Read More

We examine the interactions between actively rotating proteins moving in a membrane. Experimental evidence suggests that such rotor proteins, like the ATP synthases of the inner mitochondrial membrane, can arrange themselves into lattices. We show that crystallization is possible through a combination of hydrodynamic and repulsive interactions between the rotor proteins. In particular, hydrodynamic interactions induce rotational motion of the rotor protein assembly that, in the presence of repulsion, drives the system into a hexagonal lattice. The entire crystal rotates with an angular velocity which increases with motor density and decreases with lattice diameter - larger and sparser arrays rotate at a slower pace. The rotational interactions allow ensembles of proteins to sample configurations and reach an ordered steady state, which are inaccessible to the quenched nonrotational system. Rotational interactions thus act as a sort of temperature that removes disorder, except that actual thermal diffusion leads to expansion and loss of order. In contrast, the rotational interactions are bounded in space. Hence, once an ordered state is reached, it is maintained at all times.
To mimic the mechanical response of passive biological cilia in complex fluids, we study the bending dynamics of an anchored elastic fiber submitted to a dilute granular suspension under shear. We show that the bending fluctuations of the fiber accurately encode minute variations of the granular suspension concentration. Indeed, besides the stationary bending induced by the continuous phase flow, the passage of each single particle induces an additional deflection. We demonstrate that the dominant particle/fiber interaction arises from direct contacts of the particles with the fiber and we propose a simple elastohydrodynamics model to predict their amplitude. Our results shed light on the extreme mechanical sensitivity of biological cilia to detect the presence of solid particles in their vicinity and bring a physical framework to describe their dynamics in particulate flows.
We study the flow of membranal fluid through a ring of immobile particles mimicking, for example, a fence around a membrane corral. We obtain a simple closed-form expression for the permeability coefficient of the ring as a function of the particles line fraction. The analytical results agree with those of numerical calculations and are found to be robust against changes in particle number and corral shape. From the permeability results we infer the collective diffusion coefficient of lipids through the ring and discuss possible implications for collective lipid transport in a crowded membrane.
We derive a mobility tensor for many cylindrical objects embedded in a viscous sheet. This tensor guarantees a positive dissipation rate for any configuration of particles and forces, analogously to the Rotne-Prager-Yamakawa tensor for spherical particles in a three-dimensional viscous fluid. We test our result for a ring of radially driven particles, demonstrating the positive-definite property at all particle densities. The derived tensor can be utilized in Brownian Dynamics simulations with hydrodynamic interactions for such systems as proteins in biomembranes and inclusions in free-standing liquid films.
Inspired by recent experiments using synthetic microswimmers to manipulate droplets, we investigate the low-Reynolds-number locomotion of a model swimmer (a spherical squirmer) encapsulated inside a droplet of comparable size in another viscous fluid. Meditated solely by hydrodynamic interactions, the encaged swimmer is seen to be able to propel the droplet, and in some situations both remain in a stable co-swimming state. The problem is tackled using both an exact analytical theory and a numerical implementation based on boundary element method, with a particular focus on the kinematics of the co-moving swimmer and droplet in a concentric configuration, and we obtain excellent quantitative agreement between the two. The droplet always moves slower than a swimmer which uses purely tangential surface actuation but when it uses a particular combination of tangential and normal actuations, the squirmer and droplet are able to attain a same velocity and stay concentric for all times. We next employ numerical simulations to examine the stability of their concentric co-movement, and highlight several stability scenarios depending on the particular gait adopted by the swimmer. Furthermore, we show that the droplet reverses the nature of the far-field flow induced by the swimmer: a droplet cage turns a pusher swimmer into a puller, and vice versa. Our work sheds light on the potential development of droplets as self-contained carriers of both chemical content and self-propelled devices for controllable and precise drug deliveries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا