Do you want to publish a course? Click here

Microwave device characterisation using a widefield diamond microscope

413   0   0.0 ( 0 )
 Added by Andrew Horsley
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Devices relying on microwave circuitry form a cornerstone of many classical and emerging quantum technologies. A capability to provide in-situ, noninvasive and direct imaging of the microwave fields above such devices would be a powerful tool for their function and failure analysis. In this work, we build on recent achievements in magnetometry using ensembles of nitrogen vacancy centres in diamond, to present a widefield microwave microscope with few-micron resolution over a millimeter-scale field of view, 130nT/sqrt-Hz microwave amplitude sensitivity, a dynamic range of 48 dB, and sub-ms temporal resolution. We use our microscope to image the microwave field a few microns above a range of microwave circuitry components, and to characterise a novel atom chip design. Our results open the way to high-throughput characterisation and debugging of complex, multi-component microwave devices, including real-time exploration of device operation.



rate research

Read More

Current density distributions in active integrated circuits (ICs) result in patterns of magnetic fields that contain structural and functional information about the IC. Magnetic fields pass through standard materials used by the semiconductor industry and provide a powerful means to fingerprint IC activity for security and failure analysis applications. Here, we demonstrate high spatial resolution, wide field-of-view, vector magnetic field imaging of static (DC) magnetic field emanations from an IC in different active states using a Quantum Diamond Microscope (QDM). The QDM employs a dense layer of fluorescent nitrogen-vacancy (NV) quantum defects near the surface of a transparent diamond substrate placed on the IC to image magnetic fields. We show that QDM imaging achieves simultaneous $sim10$ $mu$m resolution of all three vector magnetic field components over the 3.7 mm $times$ 3.7 mm field-of-view of the diamond. We study activity arising from spatially-dependent current flow in both intact and decapsulated field-programmable gate arrays (FPGAs); and find that QDM images can determine pre-programmed IC active states with high fidelity using machine-learning classification methods.
We introduce a double quantum (DQ) 4-Ramsey measurement protocol that enables wide-field magnetic imaging using nitrogen vacancy (NV) centers in diamond, with enhanced homogeneity of the magnetic sensitivity relative to conventional single quantum (SQ) techniques. The DQ 4-Ramsey protocol employs microwave-phase alternation across four consecutive Ramsey (4-Ramsey) measurements to isolate the desired DQ magnetic signal from any residual SQ signal induced by microwave pulse errors. In a demonstration experiment employing a 1-$mu$m-thick NV layer in a macroscopic diamond chip, the DQ 4-Ramsey protocol provides volume-normalized DC magnetic sensitivity of $eta^text{V}=34,$nTHz$^{-1/2} mu$m$^{3/2}$ across a $125,mu$m$ ,times,125,mu $m field of view, with about 5$times$ less spatial variation in sensitivity across the field of view compared to a SQ measurement. The improved robustness and magnetic sensitivity homogeneity of the DQ 4-Ramsey protocol enable imaging of dynamic, broadband magnetic sources such as integrated circuits and electrically-active cells.
The successes of superconducting quantum circuits at local manipulation of quantum information and photonics technology at long-distance transmission of the same have spurred interest in the development of quantum transducers for efficient, low-noise, and bidirectional frequency conversion of photons between the microwave and optical domains. We propose to realize such functionality through the coupling of electrical, piezoelectric, and optomechanical resonators. The coupling of the mechanical subsystems enables formation of a resonant mechanical supermode that provides a mechanically-mediated, efficient single interface to both the microwave and optical domains. The conversion process is analyzed by applying an equivalent circuit model that relates device-level parameters to overall figures of merit for conversion efficiency $eta$ and added noise $N$. These can be further enhanced by proper impedance matching of the transducer to an input microwave transmission line. The performance of potential transducers is assessed through finite-element simulations, with a focus on geometries in GaAs, followed by considerations of the AlN, LiNbO$_3$, and AlN-on-Si platforms. We present strategies for maximizing $eta$ and minimizing $N$, and find that simultaneously achieving $eta>50~%$ and $N < 0.5$ should be possible with current technology. We find that the use of a mechanical supermode for mediating transduction is a key enabler for high-efficiency operation, particularly when paired with an appropriate microwave impedance matching network. Our comprehensive analysis of the full transduction chain enables us to outline a development path for the realization of high-performance quantum transducers that will constitute a valuable resource for quantum information science.
Versatile nanoscale sensors that are susceptible to changes in a variety of physical quantities often exhibit limited selectivity. We propose a novel scheme based on microwave-dressed spin states for optically probed nanoscale temperature detection using diamond quantum sensors, which provides selective sensitivity to temperature changes. By combining this scheme with a continuous pump-probe scheme using ensemble nitrogen-vacancy centers in nanodiamonds, we demonstrate a sub-100-nanosecond temporal resolution with thermal sensitivity of 3.7 K$cdot$Hz$^{-1/2}$ that is insensitive to variations in external magnetic fields on the order of 2 G. The presented results are favorable for the practical application of time-resolved nanoscale quantum sensing, where temperature imaging is required under fluctuating magnetic fields.
Methods and techniques to measure and image beyond the state-of-the-art have always been influential in propelling basic science and technology. Because current technologies are venturing into nanoscopic and molecular-scale fabrication, atomic-scale measurement techniques are inevitable. One such emerging sensing method uses the spins associated with nitrogen-vacancy (NV) defects in diamond. The uniqueness of this NV sensor is its atomic size and ability to perform precision sensing under ambient conditions conveniently using light and microwaves (MW). These advantages have unique applications in nanoscale sensing and imaging of magnetic fields from nuclear spins in single biomolecules. During the last few years, several encouraging results have emerged towards the realization of an NV spin-based molecular structure microscope. Here, we present a projection-reconstruction method that retrieves the three-dimensional structure of a single molecule from the nuclear spin noise signatures. We validate this method using numerical simulations and reconstruct the structure of a molecular phantom b{eta}-cyclodextrin, revealing the characteristic toroidal shape.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا