Hollow density formation in magnetically expanding helicon plasma


Abstract in English

Measurement of radial density profile in both the source and expansion chambers of a helicon plasma device have revealed that it is always centrally peaked in the source chamber, whereas in the expansion chamber near the diverging magnetic field it becomes hollow above a critical value of the magnetic field. This value corresponds to that above which both electrons and ions become magnetized. The temperature profile is always peaked off- axis and tail electrons are found at the peak location in both the source and expansion chambers. Rotation of the tail electrons in the azimuthal direction in the expansion chamber due to gradient-B drift produces more ionization off-axis and creates a hollow density profile; however, if the ions are not magnetized, the additional ionization does not cause hollowness.

Download