Do you want to publish a course? Click here

Sun-Sized Water Vapor Masers in Cepheus A

96   0   0.0 ( 0 )
 Added by James Moran
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first VLBI observations of a Galactic water maser (in Chepeus A) made with a very long baseline interferometric array involving the RadioAstron Earth-orbiting satellite station as one of its elements. We detected two distinct components at -16.9 and 0.6 km/s with a fringe spacing of 66 microarcseconds. In total power, the 0.6 km/s component appears to be a single Gaussian component of strength 580 Jy and width of 0.7 km/s. Single-telescope monitoring showed that its lifetime was only 8~months. The absence of a Zeeman pattern implies the longitudinal magnetic field component is weaker than 120 mG. The space-Earth cross power spectrum shows two unresolved components smaller than 15 microarcseconds, corresponding to a linear scale of 1.6 x 10^11 cm, about the diameter of the Sun, for a distance of 700 pc, separated by 0.54 km/s in velocity and by 160 +/-35 microarcseconds in angle. This is the smallest angular structure ever observed in a Galactic maser. The brightness temperatures are greater than 2 x 10^14K, and the line widths are 0.5 km/s. Most of the flux (about 87%) is contained in a halo of angular size of 400 +/- 150 microarcseconds. This structure is associated with the compact HII region HW3diii. We have probably picked up the most prominent peaks in the angular size range of our interferometer. We discuss three dynamical models: (1) Keplerian motion around a central object, (2) two chance overlapping clouds, and (3) vortices caused by flow around an obstacle (i.e., von Karman vortex street) with Strouhal number of about~0.3.



rate research

Read More

VLBI multi-epoch water maser observations are a powerful tool to study the dense, warm shocked gas very close to massive protostars. The very high-angular resolution of these observations allow us to measure the proper motions of the masers in a few weeks, and together with the radial velocity, to determine their full kinematics. In this paper we present a summary of the main observational results obtained toward the massive star-forming regions of Cepheus A and W75N, among them: (i) the identification of different centers of high-mass star formation activity at scales of 100 AU; (ii) the discovery of new phenomena associated with the early stages of high-mass protostellar evolution (e.g., isotropic gas ejections); and (iii) the identification of the simultaneous presence of a wide-angle outflow and a highly collimated jet in the massive object Cep A HW2, similar to what is observed in some low-mass protostars. Some of the implications of these results in the study of high-mass star formation are discussed.
The Galactic Center contains large amounts of molecular and ionized gas as well as a plethora of energetic objects. Water masers are an extinction-insensitive probe for star formation and thus ideal for studies of star formation stages in this highly obscured region. With the Australia Telescope Compact Array, we observed 22 GHz water masers in the entire Central Molecular Zone with sub-parsec resolution as part of the large SWAG survey: ``Survey of Water and Ammonia in the Galactic Center. We detect of order 600 22 GHz masers with isotropic luminosities down to ~10^-7 Lo. Masers with luminosities of >~10^-6 Lo are likely associated with young stellar objects. They appear to be close to molecular gas streamers and may be due to star formation events that are triggered at pericenter passages near Sgr A*. Weaker masers are more widely distributed and frequently show double line features, a tell-tale sign for an origin in evolved star envelopes.
Water is a crucial molecule in molecular astrophysics as it controls much of the gas/grain chemistry, including the formation and evolution of more complex organic molecules in ices. Pre-stellar cores provide the original reservoir of material from which future planetary systems are built, but few observational constraints exist on the formation of water and its partitioning between gas and ice in the densest cores. Thanks to the high sensitivity of the Herschel Space Observatory, we report on the first detection of water vapor at high spectral resolution toward a dense cloud on the verge of star formation, the pre-stellar core L1544. The line shows an inverse P-Cygni profile, characteristic of gravitational contraction. To reproduce the observations, water vapor has to be present in the cold and dense central few thousand AU of L1544, where species heavier than Helium are expected to freeze-out onto dust grains, and the ortho:para H2 ratio has to be around 1:1 or larger. The observed amount of water vapor within the core (about 1.5x10^{-6} Msun) can be maintained by Far-UV photons locally produced by the impact of galactic cosmic rays with H2 molecules. Such FUV photons irradiate the icy mantles, liberating water wapor in the core center. Our Herschel data, combined with radiative transfer and chemical/dynamical models, shed light on the interplay between gas and solids in dense interstellar clouds and provide the first measurement of the water vapor abundance profile across the parent cloud of a future solar-type star and its potential planetary system.
230 - Gary J. Melnick 2020
The depth-dependent abundance of both gas-phase and solid-state water within dense, quiescent, molecular clouds is important to both the cloud chemistry and gas cooling. Where water is in the gas phase, its free to participate in the network of ion-neutral reactions that lead to a host of oxygen-bearing molecules, and its many ortho and para energy levels make it an effective coolant for gas temperatures greater than 20K. Where water is abundant as ice on grain surfaces, and unavailable to cool the gas, significant amounts of oxygen are removed from the gas phase, suppressing the gas-phase chemical reactions that lead to a number of oxygen-bearing species, including O2. Models of FUV-illuminated clouds predict that the gas-phase water abundance peaks in the range Av ~3 and 8mag of the cloud surface, depending on the gas density and FUV field strength. Deeper within such clouds, water is predicted to exist mainly as ice on grain surfaces. More broadly, these models are used to analyze a variety of other regions, including outflow cavities associated with young stellar objects and the surface layers of protoplanetary disks. In this paper, we report the results of observational tests of FUV-illuminated cloud models toward the Orion Molecular Ridge and Cepheus B using data obtained from the Herschel Space Observatory and the Five College Radio Astronomy Observatory. Toward Orion, 2220 spatial positions were observed along the face-on Orion Ridge in the H2O 110-101 557GHz and NH3 J,K=1,0-0,0 572GHz lines. Toward Cepheus B, two strip scans were made in the same lines across the edge-on ionization front. These new observations demonstrate that gas-phase water exists primarily within a few magnitudes of dense cloud surfaces, strengthening the conclusions of an earlier study based on a much smaller data set, and indirectly supports the prediction that water ice is quite abundant in dense clouds.
131 - H. Imai 2013
We have analysed archival data taken with the Australia Telescope Compact Array (ATCA) during 2001--2003 and detected nine new interstellar and circumstellar water masers in the LMC. This takes the total number of star formation water masers in the LMC to 23, spread over 14 different star forming regions and three evolved stars. Three water maser sources (N105a/MC23, N113/MC24, N157a/MC74) have been detected in all the previous observations that targeted these sites, although all show significant variability on timescales of decades. The total number of independent water maser sources now known in the LMC means that through very long baseline interferometry astrometric measurements it will be possible to construct a more precise model of the galactic rotation of the LMC and its orbital motion around the Milky Way Galaxy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا