Do you want to publish a course? Click here

Predicting B Cell Receptor Substitution Profiles Using Public Repertoire Data

206   0   0.0 ( 0 )
 Added by Vladimir Minin
 Publication date 2018
  fields Biology
and research's language is English




Ask ChatGPT about the research

B cells develop high affinity receptors during the course of affinity maturation, a cyclic process of mutation and selection. At the end of affinity maturation, a number of cells sharing the same ancestor (i.e. in the same clonal family) are released from the germinal center, their amino acid frequency profile reflects the allowed and disallowed substitutions at each position. These clonal-family-specific frequency profiles, called substitution profiles, are useful for studying the course of affinity maturation as well as for antibody engineering purposes. However, most often only a single sequence is recovered from each clonal family in a sequencing experiment, making it impossible to construct a clonal-family-specific substitution profile. Given the public release of many high-quality large B cell receptor datasets, one may ask whether it is possible to use such data in a prediction model for clonal-family-specific substitution profiles. In this paper, we present the method Substitution Profiles Using Related Families (SPURF), a penalized tensor regression framework that integrates information from a rich assemblage of datasets to predict the clonal-family-specific substitution profile for any single input sequence. Using this framework, we show that substitution profiles from similar clonal families can be leveraged together with simulated substitution profiles and germline gene sequence information to improve prediction. We fit this model on a large public dataset and validate the robustness of our approach on an external dataset. Furthermore, we provide a command-line tool in an open-source software package (https://github.com/krdav/SPURF) implementing these ideas and providing easy prediction using our pre-fit models.



rate research

Read More

In most of the recent immunological literature the differences across antigen receptor populations are examined via non-parametric statistical measures of species overlap and diversity borrowed from ecological studies. While this approach is robust in a wide range of situations, it seems to provide little insight into the underlying clonal size distribution and the overall mechanism differentiating the receptor populations. As a possible alternative, the current paper presents a parametric method which adjusts for the data under-sampling as well as provides a unifying approach to simultaneous comparison of multiple receptor groups by means of the modern statistical tools of unsupervised learning. The parametric model is based on a flexible multivariate Poisson-lognormal distribution and is seen to be a natural generalization of the univariate Poisson-lognormal models used in ecological studies of biodiversity patterns. The procedure for evaluating models fit is described along with the public domain software developed to perform the necessary diagnostics. The model-driven analysis is seen to compare favorably vis a vis traditional methods when applied to the data from T-cell receptors in transgenic mice populations.
We are frequently faced with a large collection of antibodies, and want to select those with highest affinity for their cognate antigen. When developing a first-line therapeutic for a novel pathogen, for instance, we might look for such antibodies in patients that have recovered. There exist effective experimental methods of accomplishing this, such as cell sorting and baiting; however they are time consuming and expensive. Next generation sequencing of B cell receptor (BCR) repertoires offers an additional source of sequences that could be tapped if we had a reliable method of selecting those coding for the best antibodies. In this paper we introduce a method that uses evolutionary information from the family of related sequences that share a naive ancestor to predict the affinity of each resulting antibody for its antigen. When combined with information on the identity of the antigen, this method should provide a source of effective new antibodies. We also introduce a method for a related task: given an antibody of interest and its inferred ancestral lineage, which branches in the tree are likely to harbor key affinity-increasing mutations? These methods are implemented as part of continuing development of the partis BCR inference package, available at https://github.com/psathyrella/partis.
The collection of immunoglobulin genes in an individuals germline, which gives rise to B cell receptors via recombination, is known to vary significantly across individuals. In humans, for example, each individual has only a fraction of the several hundred known V alleles. Furthermore, the currently-accepted set of known V alleles is both incomplete (particularly for non-European samples), and contains a significant number of spurious alleles. The resulting uncertainty as to which immunoglobulin alleles are present in any given sample results in inaccurate B cell receptor sequence annotations, and in particular inaccurate inferred naive ancestors. In this paper we first show that the currently widespread practice of aligning each sequence to its closest match in the full set of IMGT alleles results in a very large number of spurious alleles that are not in the samples true set of germline V alleles. We then describe a new method for inferring each individuals germline gene set from deep sequencing data, and show that it improves upon existing methods by making a detailed comparison on a variety of simulated and real data samples. This new method has been integrated into the partis annotation and clonal family inference package, available at https://github.com/psathyrella/partis, and is run by default without affecting overall run time.
Probabilistic modeling is fundamental to the statistical analysis of complex data. In addition to forming a coherent description of the data-generating process, probabilistic models enable parameter inference about given data sets. This procedure is well-developed in the Bayesian perspective, in which one infers probability distributions describing to what extent various possible parameters agree with the data. In this paper we motivate and review probabilistic modeling for adaptive immune receptor repertoire data then describe progress and prospects for future work, from germline haplotyping to adaptive immune system deployment across tissues. The relevant quantities in immune sequence analysis include not only continuous parameters such as gene use frequency, but also discrete objects such as B cell clusters and lineages. Throughout this review, we unravel the many opportunities for probabilistic modeling in adaptive immune receptor analysis, including settings for which the Bayesian approach holds substantial promise (especially if one is optimistic about new computational methods). From our perspective the greatest prospects for progress in probabilistic modeling for repertoires concern ancestral sequence estimation for B cell receptor lineages, including uncertainty from germline genotype, rearrangement, and lineage development.
Recent technological advances in Next Generation Sequencing tools have led to increasing speeds of DNA sample collection, preparation, and sequencing. One instrument can produce over 600 Gb of genetic sequence data in a single run. This creates new opportunities to efficiently handle the increasing workload. We propose a new method of fast genetic sequence analysis using the Dynamic Distributed Dimensional Data Model (D4M) - an associative array environment for MATLAB developed at MIT Lincoln Laboratory. Based on mathematical and statistical properties, the method leverages big data techniques and the implementation of an Apache Acculumo database to accelerate computations one-hundred fold over other methods. Comparisons of the D4M method with the current gold-standard for sequence analysis, BLAST, show the two are comparable in the alignments they find. This paper will present an overview of the D4M genetic sequence algorithm and statistical comparisons with BLAST.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا