Do you want to publish a course? Click here

Statistical Reasoning: Choosing and Checking the Ingredients, Inferences Based on a Measure of Statistical Evidence with Some Applications

142   0   0.0 ( 0 )
 Added by Michael Evans
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The features of a logically sound approach to a theory of statistical reasoning are discussed. A particular approach that satisfies these criteria is reviewed. This is seen to involve selection of a model, model checking, elicitation of a prior, checking the prior for bias, checking for prior-data conflict and estimation and hypothesis assessment inferences based on a measure of evidence. A long-standing anomalous example is resolved by this approach to inference and an application is made to a practical problem of considerable importance which, among other novel aspects of the analysis, involves the development of a relevant elicitation algorithm.



rate research

Read More

117 - Michael Evans 2019
There are various approaches to the problem of how one is supposed to conduct a statistical analysis. Different analyses can lead to contradictory conclusions in some problems so this is not a satisfactory state of affairs. It seems that all approaches make reference to the evidence in the data concerning questions of interest as a justification for the methodology employed. It is fair to say, however, that none of the most commonly used methodologies is absolutely explicit about how statistical evidence is to be characterized and measured. We will discuss the general problem of statistical reasoning and the development of a theory for this that is based on being precise about statistical evidence. This will be shown to lead to the resolution of a number of problems.
Rejoinder to ``Equi-energy sampler with applications in statistical inference and statistical mechanics by Kou, Zhou and Wong [math.ST/0507080]
Results by van der Vaart (1991) from semi-parametric statistics about the existence of a non-zero Fisher information are reviewed in an infinite-dimensional non-linear Gaussian regression setting. Information-theoretically optimal inference on aspects of the unknown parameter is possible if and only if the adjoint of the linearisation of the regression map satisfies a certain range condition. It is shown that this range condition may fail in a commonly studied elliptic inverse problem with a divergence form equation, and that a large class of smooth linear functionals of the conductivity parameter cannot be estimated efficiently in this case. In particular, Gaussian `Bernstein von Mises-type approximations for Bayesian posterior distributions do not hold in this setting.
We study the statistical properties of stochastic evolution equations driven by space-only noise, either additive or multiplicative. While forward problems, such as existence, uniqueness, and regularity of the solution, for such equations have been studied, little is known about inverse problems for these equations. We exploit the somewhat unusual structure of the observations coming from these equations that leads to an interesting interplay between classical and non-traditional statistical models. We derive several types of estimators for the drift and/or diffusion coefficients of these equations, and prove their relevant properties.
We extend Hoeffdings lemma to general-state-space and not necessarily reversible Markov chains. Let ${X_i}_{i ge 1}$ be a stationary Markov chain with invariant measure $pi$ and absolute spectral gap $1-lambda$, where $lambda$ is defined as the operator norm of the transition kernel acting on mean zero and square-integrable functions with respect to $pi$. Then, for any bounded functions $f_i: x mapsto [a_i,b_i]$, the sum of $f_i(X_i)$ is sub-Gaussian with variance proxy $frac{1+lambda}{1-lambda} cdot sum_i frac{(b_i-a_i)^2}{4}$. This result differs from the classical Hoeffdings lemma by a multiplicative coefficient of $(1+lambda)/(1-lambda)$, and simplifies to the latter when $lambda = 0$. The counterpart of Hoeffdings inequality for Markov chains immediately follows. Our results assume none of countable state space, reversibility and time-homogeneity of Markov chains and cover time-dependent functions with various ranges. We illustrate the utility of these results by applying them to six problems in statistics and machine learning.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا