No Arabic abstract
For disordered Heisenberg systems with small single ion anisotropy, two spin glass transitions below the long range ordered phase transition temperature has been predicted theoretically for compositions close to the percolation threshold. Experimental verification of these predictions is still controversial for conventional spin glasses. We show that multiferroic spin glass systems can provide a unique platform for verifying these theoretical predictions via a study of change in magnetoelastic and magnetoelectric couplings, obtained from an analysis of diffraction data, at the spin glass transition temperatures. Results of macroscopic and microscopic (x-ray and neutron scattering) measurements are presented on disordered BiFeO3, a canonical Heisenberg system with small single ion anisotropy, which reveal appearance of two spin glass phases SG1 and SG2 in coexistence with the LRO phase below the A-T and G-T lines. It is shown that the temperature dependence of the integrated intensity of the antiferromagnetic peak shows dips with respect to the Brillouin function behaviour around the SG1 and SG2 transition temperatures. The ferroelectric polarisation changes significantly at the two spin glass transition temperatures. These results, obtained using microscopic techniques, clearly demonstrate that the SG1 and SG2 transitions occur on the same magnetic sublattice and are intrinsic to the system. We also construct a phase diagram showing all the magnetic phases in BF-xBT system. While our results on the two spin glass transitions support the theoretical predictions, it also raises several open questions which need to be addressed by revisiting the existing theories of spin glass transitions by taking into account the effect of magnetoelastic and magnetoelectric couplings as well as electromagnons.
Hexagonal LuFeO$_3$ has drawn a lot of research attention due to its contentious room-temperature multiferroicity. Due to the unstability of hexagonal phase in the bulk form, most experimental studies focused on LuFeO$_3$ thin films which can be stabilized by strain using proper substrates. Here we report on the hexagonal phase stabilization, magnetism, and magnetoelectric coupling of bulk LuFeO$_3$ by partial Sc-substitution of Lu. First, our first-principles calculations show that the hexagonal structure can be stabilized by partial Sc substitution, while the multiferroic properties including the noncollinear magnetic order and geometric ferroelectricity remain robustly unaffected. Therefore, Lu$_{1-x}$Sc$_x$FeO$_3$ can act as a platform to check the multiferroicity of LuFeO$_3$ and related materials in the bulk form. Second, the magnetic characterizations on bulk Lu$_{1-x}$Sc$_x$FeO$_3$ demonstrate a magnetic anomaly (probable antiferromagnetic ordering) above room temperature, $sim425-445$ K, followed by magnetic transitions in low temperatures ($sim167-172$ K). In addition, a magnetoelectric response is observed in the low temperature region. Our study provides useful information on the multiferroic physics of hexagonal $R$FeO$_3$ and related systems.
Perovskite oxides ABO$_3$ containing heavy B-site elements are a class of candidate materials to host topological metals with a large spin-orbit interaction. In contrast to the band insulator BaSnO$_3$, the semimetal BaPbO$_3$ is proposed to be a typical example with an inverted band structure, the conduction band of which is composed of mainly the O-2p orbital. In this study, we exemplify a band-gap modification by systematic structural, optical, and transport measurements in BaSn$_{1-x}$Pb$_x$O$_3$ films. A sudden suppression of the conductivity and an enhancement of the weak antilocalization effect at $x$ = 0.9 indicate the presence of a singular point in the electronic structure as a signature of the band inversion. Our findings provide an intriguing platform for combining topological aspects and electron correlation in perovskite oxides based on band-gap engineering.
The finite-temperature magnetic properties of Fe$_x$Pd$_{1-x}$ and Co$_x$Pt$_{1-x}$ alloys have been investigated. It is shown that the temperature-dependent magnetic behaviour of alloys, composed of originally magnetic and non-magnetic elements, cannot be described properly unless the coupling between magnetic moments at magnetic atoms (Fe,Co) mediated through the interactions with induced magnetic moments of non-magnetic atoms (Pd,Pt) is included. A scheme for the calculation of the Curie temperature ($T_C$) for this type of systems is presented which is based on the extended Heisenberg Hamiltonian with the appropriate exchange parameters $J_{ij}$ obtained from {em ab-initio} electronic structure calculations. Within the present study the KKR Greens function method has been used to calculate the $J_{ij}$ parameters. A comparison of the obtained Curie temperatures for Fe$_x$Pd$_{1-x}$ and Co$_x$Pt$_{1-x}$ alloys with experimental data shows rather good agreement.
We have studied the effect of Al doping on the structural, magnetic and electrical properties of La$_{1-x}$Ba$_x$Mn$_{1-x}$Al$_x$O$_3$ ($0leq x leq 0.25$) manganite, annealed in two 750$^oC$ and 1350$^oC$ temperatures. The XRD analysis shows that the structures in all samples have single phase rhombohedral structure with R$bar{3}$c space group. The unit cell volume almost decrease with increasing the Al doping in all samples. The grain growth with increasing annealing temperature and Al doping also have been studied. We observed that, T$_c$ temperature decreases when the Al ion substitute in Mn ion site. The magnetic study of the samples via magnetic susceptibility results in Griffiths and spin-glass phase for samples doped with aluminium. Along the resistivity measurement results, the $T_{MIT}$ (metal-insulator) transition temperatures decrease and the system become an insulator. The insulator-metal transition occurs for L0 sample in near 165K, while this transition is weak for H0 sample due to oxygen non-stoichiometry.Using three models viz. 1. Adiabatic small polaron hoping, 2.Variable range hopping, and 3. Percolation model, the resistance have been studied.
The Raman spectroscopy and AC and DC magnetization of Dy$_{2-x}$Eu$_x$Ti$_2$O$_7$ have been investigated. In Raman Spectroscopy, the systematic shift in all phonon modes with Eu content in Dy$_{2-x}$Eu$_x$Ti$_2$O$_7$ confirms that Dy$^{3+}$ ion is substituted by Eu3+ ions. High concentration of Eu induces the dipolar exchange interactions and crystal-field interactions in Dy$_{2-x}$Eu$_x$Ti$_2$O$_7$. Rich Eu content samples (x=1.8 and 1.9) show the existence of wasp-waisted hysteresis loop and that can be attributed to the coexistence of dipolar field and anisotropy exchange interaction. AC susceptibility shows two single ion spin freezing transitions corresponding to Dy$^{3+}$ and Eu$^{3+}$ ions respectively in x = 1.5, 1.8, 1.9 samples.