No Arabic abstract
The level structure of nuclei offers a large amount and variety of information to improve our knowledge of the strong interaction and of mesoscopic quantum systems. Gamma spectroscopy is a powerful tool to perform such studies: modern gamma multi-detectors present increasing performances in terms of sensitivity and efficiency, allowing to extend ever more our ability to observe and characterize abundant nuclear states. For instance, the high-spin part of level schemes often reflects intriguing nuclear shape phenomena: this behaviour is unveiled by high-fold experimental data analysed through multi-coincidence spectra, in which long deexcitation cascades become observable. Determining the intensity of newly discovered transitions is important to characterize the nuclear structure and formation mechanism of the emitting levels. However, it is not trivial to relate the apparent intensity observed in multi-gated spectra to the actual transition intensity. In this work, we introduce the basis of a formalism affiliated with graph theory: we have obtained analytic expressions from which data-analysis methods can eventually be derived to recover this link in a rigorous way.
An increasing demand of environmental radioactivity monitoring comes both from the scientific community and from the society. This requires accurate, reliable and fast response preferably from portable radiation detectors. Thanks to recent improvements in the technology, $gamma$-spectroscopy with sodium iodide scintillators has been proved to be an excellent tool for in-situ measurements for the identification and quantitative determination of $gamma$-ray emitting radioisotopes, reducing time and costs. Both for geological and civil purposes not only $^{40}$K, $^{238}$U, and $^{232}$Th have to be measured, but there is also a growing interest to determine the abundances of anthropic elements, like $^{137}$Cs and $^{131}$I, which are used to monitor the effect of nuclear accidents or other human activities. The Full Spectrum Analysis (FSA) approach has been chosen to analyze the $gamma$-spectra. The Non Negative Least Square (NNLS) and the energy calibration adjustment have been implemented in this method for the first time in order to correct the intrinsic problem related with the $chi ^2$ minimization which could lead to artifacts and non physical results in the analysis. A new calibration procedure has been developed for the FSA method by using in situ $gamma$-spectra instead of calibration pad spectra. Finally, the new method has been validated by acquiring $gamma$-spectra with a 10.16 cm x 10.16 cm sodium iodide detector in 80 different sites in the Ombrone basin, in Tuscany. The results from the FSA method have been compared with the laboratory measurements by using HPGe detectors on soil samples collected in the different sites, showing a satisfactory agreement between them. In particular, the $^{137}$Cs isotopes has been implemented in the analysis since it has been found not negligible during the in-situ measurements.
Airborne gamma-ray surveys are useful for many applications, ranging from geology and mining to public health and nuclear security. In all these contexts, the ability to decompose a measured spectrum into a linear combination of background source terms can provide useful insights into the data and lead to improvements over techniques that use spectral energy windows. Multiple methods for the linear decomposition of spectra exist but are subject to various drawbacks, such as allowing negative photon fluxes or requiring detailed Monte Carlo modeling. We propose using Non-negative Matrix Factorization (NMF) as a data-driven approach to spectral decomposition. Using aerial surveys that include flights over water, we demonstrate that the mathematical approach of NMF finds physically relevant structure in aerial gamma-ray background, namely that measured spectra can be expressed as the sum of nearby terrestrial emission, distant terrestrial emission, and radon and cosmic emission. These NMF background components are compared to the background components obtained using Noise-Adjusted Singular Value Decomposition (NASVD), which contain negative photon fluxes and thus do not represent emission spectra in as straightforward a way. Finally, we comment on potential areas of research that are enabled by NMF decompositions, such as new approaches to spectral anomaly detection and data fusion.
The Shape method, a novel approach to obtain the functional form of the $gamma$-ray strength function ($gamma$SF) in the absence of neutron resonance spacing data, is introduced. When used in connection with the Oslo method the slope of the Nuclear Level Density (NLD) is obtained simultaneously. The foundation of the Shape method lies in the primary $gamma$-ray transitions which preserve information on the functional form of the $gamma$SF. The Shape method has been applied to $^{56}$Fe, $^{92}$Zr, $^{164}$Dy, and $^{240}$Pu, which are representative cases for the variety of situations encountered in typical NLD and $gamma$SF studies. The comparisons of results from the Shape method to those from the Oslo method demonstrate that the functional form of the $gamma$SF is retained regardless of nuclear structure details or $J^pi$ values of the states fed by the primary transitions.
The models and weights of prior trained Convolutional Neural Networks (CNN) created to perform automated isotopic classification of time-sequenced gamma-ray spectra, were utilized to provide source domain knowledge as training on new domains of potential interest. The previous results were achieved solely using modeled spectral data. In this work we attempt to transfer the knowledge gained to the new, if similar, domain of solely measured data. The ability to train on modeled data and predict on measured data will be crucial in any successful data-driven approach to this problem space.
Neutron direct-geometry time-of-flight chopper spectroscopy is instrumental in studying fundamental excitations of vibrational and/or magnetic origin. We report here that techniques in super-resolution optical imagery (which is in real-space) can be adapted to enhance resolution and reduce noise for a neutron spectroscopy (an instrument for mapping excitations in reciprocal space). The procedure to reconstruct super-resolution energy spectra of phonon density of states relies on a realization of multi-frame registration, accurate determination of the energy-dependent point spread function, asymmetric nature of instrument resolution broadening, and iterative reconstructions. Applying these methods to phonon density of states data for a graphite sample demonstrates contrast enhancement, noise reduction, and ~5-fold improvement over nominal energy resolution. The data were collected at three different incident energies measured at the Wide Angular-Range Chopper Spectrometer at the Spallation Neutron Source.