Do you want to publish a course? Click here

Filamentation of Mid-IR pulses in ambient air in the vicinity of molecular resonances

63   0   0.0 ( 0 )
 Added by Valentina Shumakova
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Properties of filaments ignited by multi-millijoule, 90-fs mid-IR pulses centered at 3.9 {mu}m are examined experimentally by monitoring plasma density and losses as well as spectral dynamics and beam profile evolution at different focusing strengths. By softening the focusing from strong (f=0.25 m) to loose (f=7 m) we observe a shift from plasma assisted filamentation to filaments with low plasma density. In the latter case, filamentation manifests itself by beam self-symmetrization and spatial self-channeling. Spectral dynamics in the case of loose focusing is dominated by the non-linear Raman frequency downshift, which leads to the overlap with the CO2 resonance in the vicinity of 4.2 {mu}m. The dynamic CO2 absorption in the case of 3.9-{mu}m filaments with their low plasma content is the main mechanism of energy losses and either alone or together with other nonlinear processes contributes to the arrest of intensity.



rate research

Read More

We demonstrate a novel method to measure the temporal evolution of electric fields with optical frequencies. Our technique is based on the detection of transient currents in air plasma. These directional currents result from sub-cycle ionization of air with a short pump pulse, and the steering of the released electrons with the pulse to be sampled. We assess the validity of our approach by comparing it with different state-of-the-art laser-pulse characterization techniques. Notably, our method works in ambient air and facilitates a direct measurement of the field waveform, which can be viewed in real time on an oscilloscope in the exact same way as a radio frequency signal.
Supercontinuum (SC) generation based on ultrashort pulse compression constitutes one of the most promising technologies towards an ultra-wide bandwidth, high-brightness and spatially coherent light sources for applications such as spectroscopy and microscopy. Here, multi-octave SC generation in a gas-filled hollow-core antiresonant fiber (HC-ARF) is reported spanning from 200 nm in the deep ultraviolet (DUV) to 4000 nm in the mid-infrared (mid-IR). A measured average output power of 5 mW was obtained by pumping at the center wavelength of the first anti-resonance transmission window (2460 nm) with ~100 fs pulses and an injected pulse energy of ~7-8 {mu}J. The mechanism behind the extreme spectral broadening relies upon intense soliton-plasma nonlinear dynamics which leads to efficient soliton self-compression and phase-matched dispersive wave (DW) emission in the DUV region. The strongest DW is observed at 275 nm having an estimated pulse energy of 1.42 {mu}J, corresponding to 28.4 % of the total output energy. Furthermore, the effect of changing the pump pulse energy and gas pressure on the nonlinear dynamics and their direct impact on SC generation was investigated. The current work paves a new way towards novel investigations of gas-based ultrafast nonlinear optics in the emerging mid-IR spectral regime.
The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled with the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which is paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions are limited and the pulse fluence is also clamped. The resulting unique feature of the picosecond filamentation regime is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for numerous applications.
Ionizing 800-nm femtosecond laser pulses propagating in silica glass and in potassium dihydrogen phosphate (KDP) crystal are investigated by means of a unidirectional pulse propagation code. Filamentation in fused silica is compared with the self-channeling of light in KDP accounting for the presence of defect states and electron-hole dynamics. In KDP, laser pulses produce intense filaments with higher clamping intensities up to 200 TW/cm$^2$ and longer plasma channels with electron densities above $10^{16}$ cm$^{-3}$. Despite these differences, the propagation dynamics in silica and KDP are almost identical at equivalent ratios of input power over the critical power for self-focusing.
The ability to measure and control the carrier envelope phase (CEP) of few-cycle laser pulses is of paramount importance for both frequency metrology and attosecond science. Here, we present a phase meter relying on the CEP-dependent photocurrents induced by circularly polarized few-cycle pulses focused between electrodes in ambient air. The new device facilitates compact single-shot, CEP measurements under ambient conditions and promises CEP tagging at repetition rates orders of magnitude higher than most conventional CEP detection schemes as well as straightforward implementation at longer wavelengths.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا