Do you want to publish a course? Click here

Characterization of methanol as a magnetic field tracer in star-forming regions

226   0   0.0 ( 0 )
 Added by Boy Lankhaar
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic fields play an important role during star formation. Direct magnetic field strength observations have proven specifically challenging in the extremely dynamic protostellar phase. Because of their occurrence in the densest parts of star forming regions, masers, through polarization observations, are the main source of magnetic field strength and morphology measurements around protostars. Of all maser species, methanol is one of the strongest and most abundant tracers of gas around high-mass protostellar disks and in outflows. However, as experimental determination of the magnetic characteristics of methanol has remained largely unsuccessful, a robust magnetic field strength analysis of these regions could hitherto not be performed. Here we report a quantitative theoretical model of the magnetic properties of methanol, including the complicated hyperfine structure that results from its internal rotation. We show that the large range in values of the Land{e} g-factors of the hyperfine components of each maser line lead to conclusions which differ substantially from the current interpretation based on a single effective g-factor. These conclusions are more consistent with other observations and confirm the presence of dynamically important magnetic fields around protostars. Additionally, our calculations show that (non-linear) Zeeman effects must be taken into account to further enhance the accuracy of cosmological electron-to-proton mass ratio determinations using methanol.



rate research

Read More

The TOPGot project studies a sample of 86 high-mass star-forming regions in different evolutionary stages from starless cores to ultra compact HII regions. The aim of the survey is to analyze different molecular species in a statistically significant sample to study the chemical evolution in high-mass star-forming regions, and identify chemical tracers of the different phases. The sources have been observed with the IRAM 30m telescope in different spectral windows at 1, 2, and 3 mm. In this first paper, we present the sample and analyze the spectral energy distributions (SEDs) of the TOPGot sources to derive physical parameters. We use the MADCUBA software to analyze the emission of methyl cyanide (CH$_3$CN), a well-known tracer of high-mass star formation. The emission of the $rm{CH_3CN(5_{K}-4_{K})}$ K-transitions has been detected towards 73 sources (85% of the sample), with 12 non-detections and one source not observed in the frequency range of $rm{CH_3CN(5_{K}-4_{K})}$. The emission of CH$_3$CN has been detected towards all evolutionary stages, with the mean abundances showing a clear increase of an order of magnitude from high-mass starless-cores to later evolutionary stages. We found a conservative abundance upper limit for high-mass starless cores of $X_{rm CH_3CN}<4.0times10^{-11}$, and a range in abundance of $4.0times10^{-11}<X_{rm CH_3CN}<7.0times10^{-11}$ for those sources that are likely high-mass starless cores or very early high-mass protostellar objects. In fact, in this range of abundance we have identified five sources previously not classified as being in a very early evolutionary stage. The abundance of $rm{CH_3CN}$ can thus be used to identify high-mass star-forming regions in early phases of star-formation.
We present a multiwavelength study of 28 Galactic massive star-forming H II regions. For 17 of these regions, we present new distance measurements based on Gaia DR2 parallaxes. By fitting a multicomponent dust, blackbody, and power-law continuum model to the 3.6 $mu$m through 10 mm spectral energy distributions, we find that ${sim}34$% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ${sim}68$% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates $N_C ge 10^{50}~{rm s}^{-1}$ and dust-processed $L_{rm TIR}ge 10^{6.8}$ L$_{odot}$) have on average higher percentages of absorbed Lyman continuum photons ($sim$51%) and reprocessed starlight ($sim$82%) compared to less luminous regions. Luminous H II regions show lower average PAH fractions than less luminous regions, implying that the strong radiation fields from early-type massive stars are efficient at destroying PAH molecules. On average, the monochromatic luminosities at 8, 24, and 70 $mu$m combined carry 94% of the dust-reprocessed $L_{rm TIR}$. $L_{70}$ captures ${sim}52$% of $L_{rm TIR}$, and is therefore the preferred choice to infer the bolometric luminosity of dusty star-forming regions. We calibrate SFRs based on $L_{24}$ and $L_{70}$ against the Lyman continuum photon rates of the massive stars in each region. Standard extragalactic calibrations of monochromatic SFRs based on population synthesis models are generally consistent with our values.
288 - Laurent Loinard 2009
Multi-epoch radio-interferometric observations of young stellar objects can be used to measure their displacement over the celestial sphere with a level of accuracy that currently cannot be attained at any other wavelength. In particular, the accuracy achieved using carefully calibrated, phase-referenced observations with Very Long Baseline Interferometers such as NRAOs Very Long Baseline Array is better than 50 micro-arcseconds. This is sufficient to measure the trigonometric parallax and the proper motion of any radio-emitting young star within several hundred parsecs of the Sun with an accuracy better than a few percent. Using that technique, the mean distances to Taurus, Ophiuchus, Perseus and Orion have already been measured to unprecedented accuracy. With improved telescopes and equipment, the distance to all star-forming regions within 1 kpc of the Sun and beyond, as well as their internal structure and dynamics could be determined. This would significantly improve our ability to compare the observational properties of young stellar objects with theoretical predictions, and would have a major impact on our understanding of low-mass star-formation.
We present initial results of the first panoramic search for high-amplitude near-infrared variability in the Galactic Plane. We analyse the widely separated two-epoch K-band photometry in the 5th and 7th data releases of the UKIDSS Galactic Plane Survey. We find 45 stars with Delta K > 1 mag, including 2 previously known OH/IR stars and a Nova. Even though the mid-plane is not yet included in the dataset, we find the majority (66%) of our sample to be within known star forming regions (SFRs), with two large concentrations in the Serpens OB2 association (11 stars) and the Cygnus-X complex (12 stars). Sources in SFRs show spectral energy distributions (SEDs) that support classification as Young Stellar Objects (YSOs). This indicates that YSOs dominate the Galactic population of high amplitude infrared variable stars at low luminosities and therefore likely dominate the total high amplitude population. Spectroscopic follow up of the DR5 sample shows at least four stars with clear characteristics of eruptive pre-main-sequence variables, two of which are deeply embedded. Our results support the recent concept of eruptive variability comprising a continuum of outburst events with different timescales and luminosities, but triggered by a similar physical mechanism involving unsteady accretion. Also, we find what appears to be one of the most variable classical Be stars.
VLBI multi-epoch water maser observations are a powerful tool to study the dense, warm shocked gas very close to massive protostars. The very high-angular resolution of these observations allow us to measure the proper motions of the masers in a few weeks, and together with the radial velocity, to determine their full kinematics. In this paper we present a summary of the main observational results obtained toward the massive star-forming regions of Cepheus A and W75N, among them: (i) the identification of different centers of high-mass star formation activity at scales of 100 AU; (ii) the discovery of new phenomena associated with the early stages of high-mass protostellar evolution (e.g., isotropic gas ejections); and (iii) the identification of the simultaneous presence of a wide-angle outflow and a highly collimated jet in the massive object Cep A HW2, similar to what is observed in some low-mass protostars. Some of the implications of these results in the study of high-mass star formation are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا