No Arabic abstract
This paper is concerned with efficiently coloring sparse graphs in the distributed setting with as few colors as possible. According to the celebrated Four Color Theorem, planar graphs can be colored with at most 4 colors, and the proof gives a (sequential) quadratic algorithm finding such a coloring. A natural problem is to improve this complexity in the distributed setting. Using the fact that planar graphs contain linearly many vertices of degree at most 6, Goldberg, Plotkin, and Shannon obtained a deterministic distributed algorithm coloring $n$-vertex planar graphs with 7 colors in $O(log n)$ rounds. Here, we show how to color planar graphs with 6 colors in $mbox{polylog}(n)$ rounds. Our algorithm indeed works more generally in the list-coloring setting and for sparse graphs (for such graphs we improve by at least one the number of colors resulting from an efficient algorithm of Barenboim and Elkin, at the expense of a slightly worst complexity). Our bounds on the number of colors turn out to be quite sharp in general. Among other results, we show that no distributed algorithm can color every $n$-vertex planar graph with 4 colors in $o(n)$ rounds.
It is proved that triangle-free intersection graphs of $n$ L-shapes in the plane have chromatic number $O(loglog n)$. This improves the previous bound of $O(log n)$ (McGuinness, 1996) and matches the known lower bound construction (Pawlik et al., 2013).
The Borodin-Kostochka Conjecture states that for a graph $G$, if $Delta(G) geq 9$ and $omega(G) leq Delta(G)-1$, then $chi(G)leqDelta(G) -1$. We prove the Borodin-Kostochka Conjecture for $(P_5, text{gem})$-free graphs, i.e., graphs with no induced $P_5$ and no induced $K_1vee P_4$.
It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class of graphs that do not contain an induced path on $t$ vertices, for fixed $t$. We propose an algorithm that, given a 3-colorable graph without an induced path on $t$ vertices, computes a coloring with $max{5,2lceil{frac{t-1}{2}}rceil-2}$ many colors. If the input graph is triangle-free, we only need $max{4,lceil{frac{t-1}{2}}rceil+1}$ many colors. The running time of our algorithm is $O((3^{t-2}+t^2)m+n)$ if the input graph has $n$ vertices and $m$ edges.
We present a randomized distributed algorithm that computes a $Delta$-coloring in any non-complete graph with maximum degree $Delta geq 4$ in $O(log Delta) + 2^{O(sqrt{loglog n})}$ rounds, as well as a randomized algorithm that computes a $Delta$-coloring in $O((log log n)^2)$ rounds when $Delta in [3, O(1)]$. Both these algorithms improve on an $O(log^3 n/log Delta)$-round algorithm of Panconesi and Srinivasan~[STOC1993], which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an $Omega(loglog n)$ round lower bound of Brandt et al.~[STOC16].
Distributed vertex coloring is one of the classic problems and probably also the most widely studied problems in the area of distributed graph algorithms. We present a new randomized distributed vertex coloring algorithm for the standard CONGEST model, where the network is modeled as an $n$-node graph $G$, and where the nodes of $G$ operate in synchronous communication rounds in which they can exchange $O(log n)$-bit messages over all the edges of $G$. For graphs with maximum degree $Delta$, we show that the $(Delta+1)$-list coloring problem (and therefore also the standard $(Delta+1)$-coloring problem) can be solved in $O(log^5log n)$ rounds. Previously such a result was only known for the significantly more powerful LOCAL model, where in each round, neighboring nodes can exchange messages of arbitrary size. The best previous $(Delta+1)$-coloring algorithm in the CONGEST model had a running time of $O(logDelta + log^6log n)$ rounds. As a function of $n$ alone, the best previous algorithm therefore had a round complexity of $O(log n)$, which is a bound that can also be achieved by a na{i}ve folklore algorithm. For large maximum degree $Delta$, our algorithm hence is an exponential improvement over the previous state of the art.