No Arabic abstract
A growing number of Be and Oe stars, named the gamma Cas stars, are known for their unusually hard and intense X-ray emission. This emission could either trace accretion by a compact companion or magnetic interaction between the star and its decretion disk. To test these scenarios, we carried out a detailed optical monitoring of HD45314, the hottest member of the class of gamma Cas stars, along with dedicated X-ray observations on specific dates. High-resolution optical spectra were taken to monitor the emission lines formed in the disk, while X-ray spectroscopy was obtained at epochs when the optical spectrum of the Oe star was displaying peculiar properties. Over the last four years, HD45314 has entered a phase of spectacular variations. The optical emission lines have undergone important morphology and intensity changes including transitions between single- and multiple-peaked emission lines as well as shell events, and phases of (partial) disk dissipation. Photometric variations are found to be anti-correlated with the equivalent width of the H-alpha emission. Whilst the star preserved its hard and bright X-ray emission during the shell phase, the X-ray spectrum during the phase of (partial) disk dissipation was significantly softer and weaker. The observed behaviour of HD45314 suggests a direct association between the level of X-ray emission and the amount of material simultaneously present in the Oe disk as expected in the magnetic star-disk interaction scenario.
gamma Cas (B0.5e) is known to be a unique X-ray source because ot its moderate L_x, hard X-ray spectrum, and light curve punctuated by ubiquitous flares and slow undulations. Its X-ray peculiarities have led to a controversy concerning their origin: either from wind infall onto a putative degenerate companion, as for typical Be/X-ray binaries, or from the Be star per se. Recent progress has been made to address this: (1) the discovery that gamma Cas is an eccentric binary system (P = 203.59 d) with unknown secondary type, (2) the accumulation of RXTE data at 9 epochs in 1996-2000, and (3) the collation of robotic telescope B, V-band photometric observations over 4 seasons. The latter show a 3%, cyclical flux variation with cycle lengths 55-93 days. We find that X-ray fluxes at all 9 epochs show random variations with orbital phase. This contradicts the binary accretion model, which predicts a substantial modulation. However,these fluxes correlate well with the cyclical optical variations. Also, the 6 flux measurements in 2000 closely track the interpolated optical variations between the 2000 and 2001 observing seasons. Since the optical variations represent a far greater energy than that emitted as X-rays, the optical variability cannot arise from X-ray reprocessing. However, the strong correlation between the two suggests that they are driven by a common mechanism. We propose that this mechanism is a cyclical magnetic dynamo excited by a Balbus-Hawley instability located within the inner part of the circumstellar disk. In our model, variations in the field strength directly produce the changes in the magnetically related X-ray activity. Turbulence associated with the dynamo results in changes to the density distribution within the disk and creates the observed optical variations.
The gamma-Cas category is a subgroup of Be stars displaying a strong, hard, and variable thermal X-ray emission. An XMM-Newton observation of pi Aqr reveals spectral and temporal characteristics that clearly make this Be star another member of the gamma-Cas category. Furthermore, pi Aqr is a binary but, contrary to gamma-Cas, the nature of the companion to the Be star is known; it is a non-degenerate (stellar) object and its small separation from the Be star does not leave much room for a putative compact object close to the Be disk. This renders the accretion scenario difficult to apply in this system, and, hence, this discovery favors a disk-related origin for the gamma-Cas phenomenon.
Although timing variations in close binary systems have been studied for a long time, their underlying causes are still unclear. A possible explanation is the so-called Applegate mechanism, where a strong, variable magnetic field can periodically change the gravitational quadrupole moment of a stellar component, thus causing observable period changes. One of the systems exhibiting such strong orbital variations is the RS CVn binary HR 1099, whose activity cycle has been studied by various authors via photospheric and chromospheric activity indicators, resulting in contradicting periods. We aim at independently determining the magnetic activity cycle of HR 1099 using archival X-ray data to allow for a comparison to orbital period variations. Archival X-ray data from 80 different observations of HR 1099 acquired with 12 different X-ray facilities and covering almost four decades were used to determine X-ray fluxes in the energy range of 2-10 keV via spectral fitting and flux conversion. Via the Lomb-Scargle periodogram we analyze the resulting long-term X-ray light curve to search for periodicities. We do not detect any statistically significant periodicities within the X-ray data. An analysis of optical data of HR 1099 shows that the derivation of such periods is strongly dependent on the time coverage of available data, since the observed optical variations strongly deviate from a pure sine wave. We argue that this offers an explanation as to why other authors derive such a wide range of activity cycle periods based on optical data. We conclude that our analysis constitutes the longest stellar X-ray activity light curve acquired to date, yet the still rather sparse sampling of the X-ray data, along with stochastic flaring activity, does not allow for the independent determination of an X-ray activity cycle.
High energy emissions from supernovae (SNe), originated from newly formed radioactive species, provide direct evidence of nucleosynthesis at SN explosions. However, observational difficulties in the MeV range have so far allowed the signal detected only from the extremely nearby core-collapse SN 1987A. No solid detection has been reported for thermonuclear SNe Ia, despite the importance of the direct confirmation of the formation of 56Ni, which is believed to be a key ingredient in their nature as distance indicators. In this paper, we show that the new generation hard X-ray and soft gamma-ray instruments, on board Astro-H and NuStar, are capable of detecting the signal, at least at a pace of once in a few years, opening up this new window for studying SN explosion and nucleosynthesis.
Gamma Cas and its dozen analogs comprise a small but distinct class of X-ray sources. They are early Be-type stars with an exceptionally hard thermal X-ray emission. The X-ray production mechanism has been under intense debate. Two competing ideas are (i) the magnetic activities in the Be star and its disk and (ii) the mass accretion onto the unidentified white dwarf (WD). We adopt the latter as a working hypothesis and apply physical models developed to describe the X-ray spectra of classical WD binaries containing a late-type companion. Models of non-magnetic and magnetic accreting WDs were applied to gamma Cas and its brightest analog HD110432 using the Suzaku and NuSTAR data. The spectra were fitted by the two models, including the Fe I fluorescence and the Compton reflection in a consistent geometry. The derived physical parameters, such as the WD mass and mass accretion rate, are in a reasonable range in comparison to their classical WD binary counterparts. Additional pieces of evidence in the X-ray spectra (partial covering, Fe L lines, and Fe I fluorescence) were not conclusive enough to classify these two sources into a sub-class of accreting WD binaries. We discuss further observations, especially long-term temporal behaviors, which are important to elucidate the nature of these sources more if indeed they host accreting WDs.