Do you want to publish a course? Click here

Strain-assisted optomechanical coupling of polariton condensate spin to a micromechanical resonator

247   0   0.0 ( 0 )
 Added by Hamid Ohadi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report spin and intensity coupling of an exciton-polariton condensate to the mechanical vibrations of a circular membrane microcavity. We optically drive the microcavity resonator at the lowest mechanical resonance frequency while creating an optically-trapped spin-polarized polariton condensate in different locations on the microcavity, and observe spin and intensity oscillations of the condensate at the vibration frequency of the resonator. Spin oscillations are induced by vibrational strain driving, whilst the modulation of the optical trap due to the displacement of the membrane causes intensity oscillations in the condensate emission. Our results demonstrate spin-phonon coupling in a macroscopically coherent condensate.



rate research

Read More

The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen-vacancy center spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen-vacancy spin-strain interaction has not been well characterized. Here, we demonstrate dynamic, strain-mediated coupling of the mechanical motion of a diamond cantilever to the spin of an embedded nitrogen-vacancy center. Via quantum control of the spin, we quantitatively characterize the axial and transverse strain sensitivities of the nitrogen-vacancy ground state spin. The nitrogen-vacancy center is an atomic scale sensor and we demonstrate spin-based strain imaging with a strain sensitivity of 3 10^(-6) strain Hz^(-1/2). Finally, we show how this spin-resonator system could enable coherent spin-phonon interactions in the quantum regime.
Resonant photoelastic coupling in semiconductor nanostructures opens new perspectives for strongly enhanced light-sound interaction in optomechanical resonators. One potential problem, however, is the reduction of the cavity Q-factor induced by dissipation when the resonance is approached. We show in this letter that cavity-polariton mediation in the light-matter process overcomes this limitation allowing for a strongly enhanced photon-phonon coupling without significant lifetime reduction in the strongly-coupled regime. Huge optomechanical coupling factors in the PetaHz/nm range are envisaged, three orders of magnitude larger than the backaction produced by the mechanical displacement of the cavity mirrors.
The combination of low mass density, high frequency, and high quality-factor of mechanical resonators made of two-dimensional crystals such as graphene make them attractive for applications in force sensing/mass sensing, and exploring the quantum regime of mechanical motion. Microwave optomechanics with superconducting cavities offers exquisite position sensitivity and enables the preparation and detection of mechanical systems in the quantum ground state. Here, we demonstrate coupling between a multilayer graphene resonator with quality factors up to 220,000 and a high-$textit{Q}$ superconducting cavity. Using thermo-mechanical noise as calibration, we achieve a displacement sensitivity of 17 fm/$sqrt{text{Hz}}$. Optomechanical coupling is demonstrated by optomechanically induced reflection (OMIR) and absorption (OMIA) of microwave photons. We observe 17 dB of mechanical microwave amplification and signatures of strong optomechanical backaction. We extract the cooperativity $C$, a characterization of coupling strength, quantitatively from the measurement with no free parameters and find $C=8$, promising for the quantum regime of graphene motion.
Micro and nanomechanical resonators with ultra-low dissipation have great potential as useful quantum resources. The superfluid micromechanical resonators presented here possess several advantageous characteristics: straightforward thermalization, dissipationless flow, and in situ tunability. We identify and quantitatively model the various dissipation mechanisms in two resonators, one fabricated from borosilicate glass and one from single crystal quartz. As the resonators are cryogenically cooled into the superfluid state, the damping from thermal effects and from the normal fluid component are strongly suppressed. At our lowest temperatures, damping is limited solely by internal dissipation in the substrate materials, and reach quality factors up to 913,000 at 13 mK. By lifting this limitation through substrate material choice and resonator design, modelling suggests that the resonators should reach quality factors as high as 10$^8$ at 100 mK, putting this architecture in an ideal position to harness mechanical quantum effects.
148 - C. Anton , T.C.H. Liew , G. Tosi 2012
We present a time-resolved study of the logical operation of a polariton condensate transistor switch. Creating a polariton condensate (source) in a GaAs ridge-shaped microcavity with a non-resonant pulsed laser beam, the polariton propagation towards a collector, at the ridge edge, is controlled by a second weak pulse (gate), located between the source and the collector. The experimental results are interpreted in the light of simulations based on the generalized Gross-Pitaevskii equation, including incoherent pumping, decay and energy relaxation within the condensate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا