No Arabic abstract
The honeycomb lattice iridate Na$_2$IrO$_3$ shows frustrated magnetism and can potentially display Kitaev-like exchange interactions. Recently, it was shown that the electronic properties of the surface of crystalline Na$_2$IrO$_3$ can be tuned by Ar plasma treatment in a controlled manner leading to various phases of matter ranging from a fully gapped to a metallic surface, where the possibility of a charge-density wave (CDW) like transition is also expected. Here, through direct imaging with an atomic force microscope (AFM) in air, we show that the surface of crystalline Na$_2$IrO$_3$ evolves rapidly as elemental Na effuses out of the interleave planes to the surface and undergoes sublimation thereby disappearing from the surface gradually over time. Using conductive AFM we recorded a series of topographs and surface current maps simultaneously and found that the modification of the surface leads to change in the electronic properties in a dynamic fashion until the whole system reaches a dynamic equilibrium. These observations are important in the context of the exotic electronic and magnetic properties that the surface of Na$_2$IrO$_3$ displays.
We report a combined experimental and theoretical investigation of the magnetic structure of the honeycomb lattice magnet Na$_2$IrO$_3$, a strong candidate for a realization of a gapless spin-liquid. Using resonant x-ray magnetic scattering at the Ir L$_3$-edge, we find 3D long range antiferromagnetic order below T$_N$=13.3 K. From the azimuthal dependence of the magnetic Bragg peak, the ordered moment is determined to be predominantly along the {it a}-axis. Combining the experimental data with first principles calculations, we propose that the most likely spin structure is a novel zig-zag structure.
The magnetic structure of honeycomb iridate Na$_2$IrO$_3$ is of paramount importance to its exotic properties. The magnetic order is established experimentally to be zigzag antiferromagnetic. However, the previous assignment of ordered moment to the $bm{a}$-axis is tentative. We examine the magnetic structure of Na$_{2}$IrO$_{3}$ using first-principles methods. Our calculations reveal that total energy is minimized when the zigzag antiferromagnetic order is magnetized along $bm{g}approxbm{a}+bm{c}$. Such a magnetic configuration is explained by adding anisotropic interactions to the nearest-neighbor Kitaev-Heisenberg model. Spin-wave spectrum is also calculated, where the calculated spin gap of $10.4$ meV can in principle be measured by future inelastic neutron scattering experiments. Finally we emphasize that our proposal is consistent with all known experimental evidence, including the most relevant resonant x-ray magnetic scattering measurements [X. Liu emph{et al.} {Phys. Rev. B} textbf{83}, 220403(R) (2011)].
In situ electrochemical cells were assembled with an amorphous germanium (a-Ge) film as working electrode and sodium foil as reference and counter electrode. The stresses generated in a-Ge electrodes due to electrochemical reaction with sodium were measured in real-time during the galvanostatic cycling. A specially designed patterned a-Ge electrode was cycled against sodium and the corresponding volume changes were measured using an AFM; it was observed that sodiation/desodiation of a-Ge results in more than 300% volume change, consistent with literature. The potential and stress response showed that the a-Ge film undergoes irreversible changes during the first sodiation process, but the subsequent desodiation/sodiation cycles are reversible. The stress response of the film reached steady-state after the initial sodiation and is qualitatively similar to the response of Ge during lithiation, i.e., initial linear elastic response followed by extensive plastic deformation of the film to accommodate large volume changes. However, despite being bigger ion, sodiation of Ge generated lower stress levels compared to lithiation. Consequently, the mechanical dissipation losses associated with plastic deformation are lower during sodiation process than it is for lithiation.
We use a three-pulse ultrafast optical spectroscopy to study the relaxation processes in a frustrated Mott insulator Na$_2$IrO$_3$. By being able to independently produce the out-of-equilibrium bound states (excitons) of doublons and holons with the first pulse and suppress the underlying antiferromagnetic order with the second one, we were able to elucidate the relaxation mechanism of quasiparticles in this system. By observing the difference in the exciton dynamics in the magnetically ordered and disordered phases we found that the mass of this quasiparticle is mostly determined by its interaction with the surrounding spins.
The idea that surface effects may play an important role in suppressing $e_g$ Fermi surface pockets on Na$_x$CoO$_2$ $(0.333 le x le 0.75)$ has been frequently proposed to explain the discrepancy between LDA calculations (performed on the bulk compound) which find $e_g$ hole pockets present and ARPES experiments, which do not observe the hole pockets. Since ARPES is a surface sensitive technique it is important to investigate the effects that surface formation will have on the electronic structure of Na$_{1/3}$CoO$_2$ in order to more accurately compare theory and experiment. We have calculated the band structure and Fermi surface of cleaved Na$_{1/3}$CoO$_2$ and determined that the surface non-trivially affects the fermiology in comparison to the bulk. Additionally, we examine the likelihood of possible hydroxyl cotamination and surface termination. Our results show that a combination of surface formation and contamination effects could resolve the ongoing controversy between ARPES experiments and theory.