Do you want to publish a course? Click here

Systematics of electronic and magnetic properties in the transition metal doped Sb$_2$Te$_3$ quantum anomalous Hall platform

97   0   0.0 ( 0 )
 Added by Md Islam
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically-doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and controlled. Here we report on a detailed and systematic investigation of transition-metal (TM)-doped Sb$_2$Te$_3$. By combining density functional theory (DFT) calculations with complementary experimental techniques, i.e., scanning tunneling microscopy (STM), resonant photoemission (resPES), and x-ray magnetic circular dichroism (XMCD), we provide a complete spectroscopic characterization of both electronic and magnetic properties. Our results reveal that the TM dopants not only affect the magnetic state of the host material, but also significantly alter the electronic structure by generating impurity-derived energy bands. Our findings demonstrate the existence of a delicate interplay between electronic and magnetic properties in TM-doped TIs. In particular, we find that the fate of the topological surface states critically depends on the specific character of the TM impurity: while V- and Fe-doped Sb$_2$Te$_3$ display resonant impurity states in the vicinity of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The single-ion magnetic anisotropy energy and easy axis, which control the magnetic gap opening and its stability, are also found to be strongly TM impurity-dependent and can vary from in-plane to out-of-plane depending on the impurity and its distance from the surface. Overall, our results provide general guidelines for the realization of a robust QAHE in TM-doped Sb$_2$Te$_3$ in the ferromagnetic state.

rate research

Read More

The influence of Sb content, substrate type and cap layers on the quantum anomalous Hall effect observed in V-doped (Bi,Sb)$_2$Te$_3$ magnetic topological insulators is investigated. Thin layers showing excellent quantization are reproducibly deposited by molecular beam epitaxy at growth conditions effecting a compromise between controlled layer properties and high crystalline quality. The Sb content can be reliably determined from the in-plane lattice constant measured by X-ray diffraction, even in thin layers. This is the main layer parameter to be optimized in order to approach charge neutrality. Within a narrow range at about 80% Sb content, the Hall resistivity shows a maximum of about 10 k$Omega$ at 4 K and quantizes at mK temperatures. Under these conditions, thin layers grown on Si(111) or InP(111) and with or without a Te cap exhibit quantization. The quantization persists independently of the interfaces between cap, layer and substrate, the limited crystalline quality, and the degradation of the layer proving the robustness of the quantum anomalous Hall effect.
Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetically-doped topological insulators or intrinsic magnetic topological insulator MnBi$_2$Te$_4$ by applying an external magnetic field. However, either the low observation temperature or the unexpected external magnetic field (tuning all MnBi$_2$Te$_4$ layers to be ferromagnetic) still hinders further application of QAHE. Here, we theoretically demonstrate that proper stacking of MnBi$_2$Te$_4$ and Sb$_2$Te$_3$ layers is able to produce intrinsically ferromagnetic van der Waals heterostructures to realize the high-temperature QAHE. We find that interlayer ferromagnetic transition can happen at $T_{rm C}=42~rm K$ when a five-quintuple-layer Sb$_2$Te$_3$ topological insulator is inserted into two septuple-layer MnBi$_2$Te$_4$ with interlayer antiferromagnetic coupling. Band structure and topological property calculations show that MnBi$_2$Te$_4$/Sb$_2$Te$_3$/MnBi$_2$Te$_4$ heterostructure exhibits a topologically nontrivial band gap around 26 meV, that hosts a QAHE with a Chern number of $mathcal{C}=1$. In addition, our proposed materials system should be considered as an ideal platform to explore high-temperature QAHE due to the fact of natural charge-compensation, originating from the intrinsic n-type defects in MnBi$_2$Te$_4$ and p-type defects in Sb$_2$Te$_3$.
The extraordinary electronic and optical properties of the crystal-to-amorphous transition in phase-change materials led to important developments in memory applications. A promising outlook is offered by nanoscaling such phase-change structures. Following this research line, we study the interband optical transmission spectra of nanoscaled GeTe/Sb$_2$Te$_3$ chalcogenide superlattice films. We determine, for films with varying stacking sequence and growth methods, the density and scattering time of the free electrons, and the characteristics of the valence-to-conduction transition. It is found that the free electron density decreases with increasing GeTe content, for sub-layer thickness below $sim$3 nm. A simple band model analysis suggests that GeTe and Sb$_2$Te$_3$ layers mix, forming a standard GeSbTe alloy buffer layer. We show that it is possible to control the electronic transport properties of the films by properly choosing the deposition layer thickness and we derive a model for arbitrary film stacks.
We show that quasi-one-dimensional (1D) quantum wires can be written onto the surface of magnetic topological insulator (MTI) thin films by gate arrays. When the MTI is in a quantum anomalous Hall (QAH) state, MTI$/$superconductor quantum wires have especially broad stability regions for both topological and non-topological states, facilitating creation and manipulation of Majorana particles on the MTI surface.
We performed x-ray magnetic circular dichroism (XMCD) measurements on heterostructures comprising topological insulators (TIs) of the (Bi,Sb)$_2$(Se,Te)$_3$ family and the magnetic insulator EuS. XMCD measurements allow us to investigate element-selective magnetic proximity effects at the very TI/EuS interface. A systematic analysis reveals that there is neither significant induced magnetism within the TI nor an enhancement of the Eu magnetic moment at such interface. The induced magnetic moments in Bi, Sb, Te, and Se sites are lower than the estimated detection limit of the XMCD measurements of $sim!10^{-3}$ $mu_mathrm{B}$/at.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا