Do you want to publish a course? Click here

Stochastic Darboux transformations for quasi-birth-and-death processes and urn models

144   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We consider stochastic UL and LU block factorizations of the one-step transition probability matrix for a discrete-time quasi-birth-and-death process, namely a stochastic block tridiagonal matrix. The simpler case of random walks with only nearest neighbors transitions gives a unique LU factorization and a one-parameter family of factorizations in the UL case. The block structure considered here yields many more possible factorizations resulting in a much enlarged class of potential applications. By reversing the order of the factors (also known as a Darboux transformation) we get new families of quasi-birth-and-death processes where it is possible to identify the matrix-valued spectral measures in terms of a Geronimus (UL) or a Christoffel (LU) transformation of the original one. We apply our results to one example going with matrix-valued Jacobi polynomials arising in group representation theory. We also give urn models for some particular cases.



rate research

Read More

We use methods from combinatorics and algebraic statistics to study analogues of birth-and-death processes that have as their state space a finite subset of the $m$-dimensional lattice and for which the $m$ matrices that record the transition probabilities in each of the lattice directions commute pairwise. One reason such processes are of interest is that the transition matrix is straightforward to diagonalize, and hence it is easy to compute $n$ step transition probabilities. The set of commuting birth-and-death processes decomposes as a union of toric varieties, with the main component being the closure of all processes whose nearest neighbor transition probabilities are positive. We exhibit an explicit monomial parametrization for this main component, and we explore the boundary components using primary decomposition.
We introduce a class of birth-and-death Polya urns, which allow for both sampling and removal of observations governed by an auxiliary inhomogeneous Bernoulli process, and investigate the asymptotic behaviour of the induced allelic partitions. By exploiting some embedded models, we show that the asymptotic regimes exhibit a phase transition from partitions with almost surely infinitely many blocks and independent counts, to stationary partitions with a random number of blocks. The first regime corresponds to limits of Ewens-type partitions and includes a result of Arratia, Barbour and Tavare (1992) as a special case. We identify the invariant and reversible measure in the second regime, which preserves asymptotically the dependence between counts, and is shown to be a mixture of Ewens sampling formulas, with a tilted Negative Binomial mixing distribution on the sample size.
232 - Tobias Galla 2016
The dynamics of populations is frequently subject to intrinsic noise. At the same time unknown interaction networks or rate constants can present quenched uncertainty. Existing approaches often involve repeated sampling of the quenched disorder and then running the stochastic birth-death dynamics on these samples. In this paper we take a different view, and formulate an effective jump process, representative of the ensemble of quenched interactions as a whole. Using evolutionary games with random payoff matrices as an example, we develop an algorithm to simulate this process, and we discuss diffusion approximations in the limit of weak intrinsic noise.
A strong negative dependence property for measures on {0,1}^n - stability - was recently developed in [5], by considering the zero set of the probability generating function. We extend this property to the more general setting of reaction-diffusion processes and collections of independent Markov chains. In one dimension the generalized stability property is now independently interesting, and we characterize the birth-death chains preserving it.
63 - R. Carrizo Vergara 2021
We show that any (real) generalized stochastic process over $mathbb{R}^{d}$ can be expressed as a linear transformation of a White Noise process over $mathbb{R}^{d}$. The procedure is done by using the regularity theorem for tempered distributions to obtain a mean-square continuous stochastic process which is then expressed in a Karhunen-Lo`eve expansion with respect to a convenient Hilbert space. This result also allows to conclude that any generalized stochastic process can be expressed as a series expansion of deterministic tempered distributions weighted by uncorrelated random variables with square-summable variances. A result specifying when a generalized stochastic process can be linearly transformed into a White Noise is also presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا