Do you want to publish a course? Click here

Gamma-ray beams with large orbital angular momentum via nonlinear Compton scattering with radiation reaction

105   0   0.0 ( 0 )
 Added by Karen Hatsagortsyan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gamma-ray beams with large angular momentum are a very valuable tool to study astrophysical phenomena in a laboratory. We investigate generation of well-collimated $gamma$-ray beams with a very large orbital angular momentum using nonlinear Compton scattering of a strong laser pulse of twisted photons at ultra-relativistic electrons. Angular momentum conservation among absorbed laser photons, quantum radiation and electrons are numerically demonstrated in the quantum radiation dominated regime. We point out that the angular momentum of the absorbed laser photons is not solely transferred to the emitted $gamma$-photons, but due to radiation reaction shared between the $gamma$-photons and interacting electrons. The efficiency of the angular momentum transfer is optimized with respect to the laser and electron beam parameters. The accompanying process of electron-positron pair production is furthermore shown to enhance the orbital angular momentum gained by the $gamma$-ray beam.



rate research

Read More

We propose a scheme to generate gamma-ray photons with an orbital angular momentum (OAM) and high energy simultaneously from laser-plasma interactions by irradiating a circularly polarized Laguerre-Gaussian laser on a thin plasma target. The spin angular momentum and OAM are first transferred to electrons from the driving laser photons, and then the OAM is transferred to the gamma-ray photons from the electrons through quantum radiation. This scheme has been demonstrated using three-dimensional quantum electrodynamics particle-in-cell simulation. The topological charge, chirality and carrier-envelope phase of the short ultra-intense vortex laser can be revealed according to the pattern feature of the energy density of radiated photons.
The feasibility of generation of bright ultrashort gamma-ray pulses is demonstrated in the interaction of a relativistic electron bunch with a counterpropagating tightly-focused superstrong laser beam in the radiation dominated regime. The Compton scattering spectra of gamma-radiation are investigated using a semiclassical description for the electron dynamics in the laser field and a quantum electrodynamical description for the photon emission. We demonstrate the feasibility of ultrashort gamma-ray bursts of hundreds of attoseconds and of dozens of megaelectronvolt photon energies in the near-backwards direction of the initial electron motion. The tightly focused laser field structure and radiation reaction are shown to be responsible for such short gamma-ray bursts which are independent of the durations of the electron bunch and of the laser pulse. The results are measurable with the laser technology available in a near-future.
Impacts of spin-polarization of an ultrarelativistic electron beam head-on colliding with a strong laser pulse on emitted photon spectra and electron dynamics have been investigated in the quantum radiation regime. We simulate photon emissions quantum mechanically and electron dynamics semiclassically via taking spin-resolved radiation probabilities in the local constant field approximation. A small ellipticity of the laser field brings about an asymmetry in angle-resolved photon spectrum, which sensitively relies on the polarization of the electron beam. The asymmetry is particularly significant in high-energy photon spectra, and is employed for the polarization detection of a high-energy electron beam with extraordinary precision, e.g., better than 0.3% for a few-GeV electron beam at a density of the scale of $10^{16}$ cm$^{-3}$ with currently available strong laser fields. This method demonstrates for the first time a way of single-shot determination of polarization for ultrarelativistic electron beams via nonlinear Compton scattering. A similar method based on the asymmetry in the electron momentum distribution after the interaction due to spin-dependent radiation reaction is proposed as well.
241 - J.T. Mendonc{c}a , B. Thide , 2009
We study theoretically the exchange of angular momentum between electromagnetic and electrostatic waves in a plasma, due to the stimulated Raman and Brillouin backscattering processes. Angular momentum states for plasmon and phonon fields are introduced for the first time. We demonstrate that these states can be excited by nonlinear wave mixing, associated with the scattering processes. This could be relevant for plasma diagnostics, both in laboratory and in space. Nonlinearly coupled paraxial equations and instability growth rates are derived.
Quantum complementarity states that particles, e.g. electrons, can exhibit wave-like properties such as diffraction and interference upon propagation. textit{Electron waves} defined by a helical wavefront are referred to as twisted electrons~cite{uchida:10,verbeeck:10,mcmorran:11}. These electrons are also characterised by a quantized and unbounded magnetic dipole moment parallel to their propagation direction, as they possess a net charge of $-|e|$~cite{bliokh:07}. When interacting with magnetic materials, the wavefunctions of twisted electrons are inherently modified~cite{lloyd:12b,schattschneider:14a,asenjo:14}. Such variations therefore motivate the need to analyze electron wavefunctions, especially their wavefronts, in order to obtain information regarding the materials structure~cite{harris:15}. Here, we propose, design, and demonstrate the performance of a device for measuring an electrons azimuthal wavefunction, i.e. its orbital angular momentum (OAM) content. Our device consists of nanoscale holograms designed to introduce astigmatism onto the electron wavefunctions and spatially separate its phase components. We sort pure and superposition OAM states of electrons ranging within OAM values of $-10$ and $10$. We employ the device to analyze the OAM spectrum of electrons having been affected by a micron-scale magnetic dipole, thus establishing that, with a midfield optical configuration, our sorter can be an instrument for nano-scale magnetic spectroscopy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا