Do you want to publish a course? Click here

Evaluating Compositionality in Sentence Embeddings

173   0   0.0 ( 0 )
 Added by Ishita Dasgupta
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

An important challenge for human-like AI is compositional semantics. Recent research has attempted to address this by using deep neural networks to learn vector space embeddings of sentences, which then serve as input to other tasks. We present a new dataset for one such task, `natural language inference (NLI), that cannot be solved using only word-level knowledge and requires some compositionality. We find that the performance of state of the art sentence embeddings (InferSent; Conneau et al., 2017) on our new dataset is poor. We analyze the decision rules learned by InferSent and find that they are consistent with simple heuristics that are ecologically valid in its training dataset. Further, we find that augmenting training with our dataset improves test performance on our dataset without loss of performance on the original training dataset. This highlights the importance of structured datasets in better understanding and improving AI systems.



rate research

Read More

When the meaning of a phrase cannot be inferred from the individual meanings of its words (e.g., hot dog), that phrase is said to be non-compositional. Automatic compositionality detection in multi-word phrases is critical in any application of semantic processing, such as search engines; failing to detect non-compositional phrases can hurt system effectiveness notably. Existing research treats phrases as either compositional or non-compositional in a deterministic manner. In this paper, we operationalize the viewpoint that compositionality is contextual rather than deterministic, i.e., that whether a phrase is compositional or non-compositional depends on its context. For example, the phrase `green card is compositional when referring to a green colored card, whereas it is non-compositional when meaning permanent residence authorization. We address the challenge of detecting this type of contextual compositionality as follows: given a multi-word phrase, we enrich the word embedding representing its semantics with evidence about its global context (terms it often collocates with) as well as its local context (narratives where that phrase is used, which we call usage scenarios). We further extend this representation with information extracted from external knowledge bases. The resulting representation incorporates both localized context and more general usage of the phrase and allows to detect its compositionality in a non-deterministic and contextual way. Empirical evaluation of our model on a dataset of phrase compositionality, manually collected by crowdsourcing contextual compositionality assessments, shows that our model outperforms state-of-the-art baselines notably on detecting phrase compositionality.
Sentence embedding methods using natural language inference (NLI) datasets have been successfully applied to various tasks. However, these methods are only available for limited languages due to relying heavily on the large NLI datasets. In this paper, we propose DefSent, a sentence embedding method that uses definition sentences from a word dictionary, which performs comparably on unsupervised semantics textual similarity (STS) tasks and slightly better on SentEval tasks than conventional methods. Since dictionaries are available for many languages, DefSent is more broadly applicable than methods using NLI datasets without constructing additional datasets. We demonstrate that DefSent performs comparably on unsupervised semantics textual similarity (STS) tasks and slightly better on SentEval tasks to the methods using large NLI datasets. Our code is publicly available at https://github.com/hpprc/defsent .
105 - Qingyu Chen , Yifan Peng , 2018
Sentence embeddings have become an essential part of todays natural language processing (NLP) systems, especially together advanced deep learning methods. Although pre-trained sentence encoders are available in the general domain, none exists for biomedical texts to date. In this work, we introduce BioSentVec: the first open set of sentence embeddings trained with over 30 million documents from both scholarly articles in PubMed and clinical notes in the MIMIC-III Clinical Database. We evaluate BioSentVec embeddings in two sentence pair similarity tasks in different text genres. Our benchmarking results demonstrate that the BioSentVec embeddings can better capture sentence semantics compared to the other competitive alternatives and achieve state-of-the-art performance in both tasks. We expect BioSentVec to facilitate the research and development in biomedical text mining and to complement the existing resources in biomedical word embeddings. BioSentVec is publicly available at https://github.com/ncbi-nlp/BioSentVec
This paper presents SimCSE, a simple contrastive learning framework that greatly advances the state-of-the-art sentence embeddings. We first describe an unsupervised approach, which takes an input sentence and predicts itself in a contrastive objective, with only standard dropout used as noise. This simple method works surprisingly well, performing on par with previous supervised counterparts. We find that dropout acts as minimal data augmentation and removing it leads to a representation collapse. Then, we propose a supervised approach, which incorporates annotated pairs from natural language inference datasets into our contrastive learning framework, by using entailment pairs as positives and contradiction pairs as hard negatives. We evaluate SimCSE on standard semantic textual similarity (STS) tasks, and our unsupervised and supervised models using BERT base achieve an average of 76.3% and 81.6% Spearmans correlation respectively, a 4.2% and 2.2% improvement compared to previous best results. We also show -- both theoretically and empirically -- that contrastive learning objective regularizes pre-trained embeddings anisotropic space to be more uniform, and it better aligns positive pairs when supervised signals are available.
It is well-known that typical word embedding methods such as Word2Vec and GloVe have the property that the meaning can be composed by adding up the embeddings (additive compositionality). Several theories have been proposed to explain additive compositionality, but the following questions remain unanswered: (Q1) The assumptions of those theories do not hold for the practical word embedding. (Q2) Ordinary additive compositionality can be seen as an AND operation of word meanings, but it is not well understood how other operations, such as OR and NOT, can be computed by the embeddings. We address these issues by the idea of frequency-weighted centering at its core. This paper proposes a post-processing method for bridging the gap between practical word embedding and the assumption of theory about additive compositionality as an answer to (Q1). It also gives a method for taking OR or NOT of the meaning by linear operation of word embedding as an answer to (Q2). Moreover, we confirm experimentally that the accuracy of AND operation, i.e., the ordinary additive compositionality, can be improved by our post-processing method (3.5x improvement in top-100 accuracy) and that OR and NOT operations can be performed correctly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا