No Arabic abstract
The family of Kitaev materials provides an ideal platform to study quantum spin liquids and their neighboring magnetic orders. Motivated by the possibility of a quantum spin liquid ground state in pressurized hyperhoneycomb iridate $beta$-Li$_2$IrO$_3$, we systematically classify and study symmetric quantum spin liquids on the hyperhoneycomb lattice, using the Abrikosov-fermion representation. Among the 176 symmetric $U(1)$ spin liquids (and 160 $Z_2$ spin liquids), we identify 8 root $U(1)$ spin liquids in proximity to the ground state of the solvable Kitave model on hyperhonecyomb lattices. These 8 states are promising candidates for possible $U(1)$ spin liquid ground states in pressurized $beta$-Li$_2$IrO$_3$. We further discuss physical properties of these 8 $U(1)$ spin liquid candidates, and show that they all support nodal-line-shaped spinon Fermi surfaces.
We study the effective spin-orbital model that describes the magnetism of 4$d^1$ or 5$d^1$ Mott insulators in ideal tricoordinated lattices. In the limit of vanishing Hunds coupling, the model has an emergent SU(4) symmetry which is made explicit by means of a Klein transformation on pseudospin degrees of freedom. Taking the hyperhoneycomb lattice as an example, we employ parton constructions with fermionic representations of the pseudospin operators to investigate possible quantum spin-orbital liquid states. We then use variational Monte Carlo (VMC) methods to compute the energies of the projected wave functions. Our numerical results show that the lowest-energy quantum liquid corresponds to a zero-flux state with a Fermi surface of four-color fermionic partons. In spite of the Fermi surface, we demonstrate that this state is stable against tetramerization. A combination of linear flavor wave theory and VMC applied to the complete microscopic model also shows that this liquid state is stable against the formation of collinear long-range order.
Quantum spin liquids are an exciting playground for exotic physical phenomena and emergent many-body quantum states. The realization and discovery of quantum spin liquid candidate materials and associated phenomena lie at the intersection of solid-state chemistry, condensed matter physics and materials science and engineering. In this review, we provide the current status of the crystal chemistry, synthetic techniques, physical properties, and research methods in the field of quantum spin liquids. We also highlight a number of specific quantum spin liquid candidate materials and their structure-property relationships, elucidating their fascinating behavior and connecting it to the intricacies of their structures. Furthermore, we share our thoughts on defects and their inevitable presence in materials, of which quantum spin liquids are no exception, which can complicate the interpretation of characterization of these materials, and urge the community to extend their attention to materials preparation and data analysis, cognizant of the impact of defects. This review was written with the intention of providing guidance on improving the materials design and growth of quantum spin liquids, and painting a picture of the beauty of the underlying chemistry of this exciting class of materials.
We review recent density-matrix renormalization group (DMRG) studies of lightly doped quantum spin liquids (QSLs) on the kagome lattice. While a number of distinct conducting phases, including high-temperature superconductivity, have been theoretically anticipated we find instead a tendency toward fractionalized insulating charge-density-wave (CDW) states. In agreement with earlier work (Jiang, Devereaux, and Kivelson, Phys. Rev. Lett. ${bf 119}$, 067002 (2017)), results for the $t$-$J$ model reveal that starting from a fully gapped QSL, light doping leads to CDW long-range order with a pattern that depends on lattice geometry and doping concentration such that there is one doped-hole per CDW unit cell, while the spin-spin correlations remain short-ranged. Alternatively, this state can be viewed as a stripe crystal or Wigner crystal of spinless holons, rather than doped holes. From here, by studying generaliz
We construct and study quantum trimer models and resonating SU(3)-singlet models on the kagome lattice, which generalize quantum dimer models and the Resonating Valence Bond wavefunctions to a trimer and SU(3) setting. We demonstrate that these models carry a Z_3 symmetry which originates in the structure of trimers and the SU(3) representation theory, and which becomes the only symmetry under renormalization. Based on this, we construct simple and exact parent Hamiltonians for the model which exhibit a topological 9-fold degenerate ground space. A combination of analytical reasoning and numerical analysis reveals that the quantum order ultimately displayed by the model depends on the relative weight assigned to different types of trimers -- it can display either Z_3 topological order or form a symmetry-broken trimer crystal, and in addition possesses a point with an enhanced U(1) symmetry and critical behavior. Our results accordingly hold for the SU(3) model, where the two natural choices for trimer weights give rise to either a topological spin liquid or a system with symmetry-broken order, respectively. Our work thus demonstrates the suitability of resonating trimer and SU(3)-singlet ansatzes to model SU(3) topological spin liquids on the kagome lattice.
We study the nearest neighbor $XXZ$ Heisenberg quantum antiferromagnet on the kagome lattice. Here we consider the effects of several perturbations: a) a chirality term, b) a Dzyaloshinski-Moriya term, and c) a ring-exchange type term on the bowties of the kagome lattice, and inquire if they can suppport chiral spin liquids as ground states. The method used to study these Hamiltonians is a flux attachment transformation that maps the spins on the lattice to fermions coupled to a Chern-Simons gauge field on the kagome lattice. This transformation requires us to consistently define a Chern-Simons term on the kagome lattice. We find that the chirality term leads to a chiral spin liquid even in the absence of an uniform magnetic field, with an effective spin Hall conductance of $sxy = frac{1}{2}$ in the regime of $XY$ anisotropy. The Dzyaloshinkii-Moriya term also leads a similar chiral spin liquid but only when this term is not too strong. An external magnetic field also has the possibility of giving rise to additional plateaus which also behave like chiral spin liquids in the $XY$ regime. Finally, we consider the effects of a ring-exchange term and find that, provided its coupling constant is large enough, it may trigger a phase transition into a chiral spin liquid by the spontaneous breaking of time-reversal invariance.