Do you want to publish a course? Click here

Cellular automaton models for time-correlated random walks: derivation and analysis

115   0   0.0 ( 0 )
 Added by Rainer Klages
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many diffusion processes in nature and society were found to be anomalous, in the sense of being fundamentally different from conventional Brownian motion. An important example is the migration of biological cells, which exhibits non-trivial temporal decay of velocity autocorrelation functions. This means that the corresponding dynamics is characterized by memory effects that slowly decay in time. Motivated by this we construct non-Markovian lattice-gas cellular automata models for moving agents with memory. For this purpose the reorientation probabilities are derived from velocity autocorrelation functions that are given a priori; in that respect our approach is `data-driven. Particular examples we consider are velocity correlations that decay exponentially or as power laws, where the latter functions generate anomalous diffusion. The computational efficiency of cellular automata combined with our analytical results paves the way to explore the relevance of memory and anomalous diffusion for the dynamics of interacting cell populations, like confluent cell monolayers and cell clustering.



rate research

Read More

Based on a detailed microscopic test scenario motivated by recent empirical studies of single-vehicle data, several cellular automaton models for traffic flow are compared. We find three levels of agreement with the empirical data: 1) models that do not reproduce even qualitatively the most important empirical observations, 2) models that are on a macroscopic level in reasonable agreement with the empirics, and 3) models that reproduce the empirical data on a microscopic level as well. Our results are not only relevant for applications, but also shed new light on the relevant interactions in traffic flow.
We study the extremal properties of a stochastic process $x_t$ defined by a Langevin equation $dot{x}_t=sqrt{2 D_0 V(B_t)},xi_t$, where $xi_t$ is a Gaussian white noise with zero mean, $D_0$ is a constant scale factor, and $V(B_t)$ is a stochastic diffusivity (noise strength), which itself is a functional of independent Brownian motion $B_t$. We derive exact, compact expressions for the probability density functions (PDFs) of the first passage time (FPT) $t$ from a fixed location $x_0$ to the origin for three different realisations of the stochastic diffusivity: a cut-off case $V(B_t) =Theta(B_t)$ (Model I), where $Theta(x)$ is the Heaviside theta function; a Geometric Brownian Motion $V(B_t)=exp(B_t)$ (Model II); and a case with $V(B_t)=B_t^2$ (Model III). We realise that, rather surprisingly, the FPT PDF has exactly the Levy-Smirnov form (specific for standard Brownian motion) for Model II, which concurrently exhibits a strongly anomalous diffusion. For Models I and III either the left or right tails (or both) have a different functional dependence on time as compared to the Levy-Smirnov density. In all cases, the PDFs are broad such that already the first moment does not exist. Similar results are obtained in three dimensions for the FPT PDF to an absorbing spherical target.
We apply the transfer-matrix DMRG (TMRG) to a stochastic model, the Domany-Kinzel cellular automaton, which exhibits a non-equilibrium phase transition in the directed percolation universality class. Estimates for the stochastic time evolution, phase boundaries and critical exponents can be obtained with high precision. This is possible using only modest numerical effort since the thermodynamic limit can be taken analytically in our approach. We also point out further advantages of the TMRG over other numerical approaches, such as classical DMRG or Monte-Carlo simulations.
We investigate the effects of markovian resseting events on continuous time random walks where the waiting times and the jump lengths are random variables distributed according to power law probability density functions. We prove the existence of a non-equilibrium stationary state and finite mean first arrival time. However, the existence of an optimum reset rate is conditioned to a specific relationship between the exponents of both power law tails. We also investigate the search efficiency by finding the optimal random walk which minimizes the mean first arrival time in terms of the reset rate, the distance of the initial position to the target and the characteristic transport exponents.
We introduce a heterogeneous continuous time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatio-temporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا