Do you want to publish a course? Click here

High-resolution observations of IRAS 08544-4431. Detection of a disk orbiting a post-AGB star and of a slow disk wind

72   0   0.0 ( 0 )
 Added by Valentin Bujarrabal
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We are studying a class of binary post-AGB stars that seem to be systematically surrounded by equatorial disks and slow outflows. Although the rotating dynamics had only been well identified in three cases, the study of such structures is thought to be fundamental to the understanding of the formation of nebulae around evolved stars. We present ALMA maps of 12CO and 13CO J=3-2 lines in one of these sources, IRAS08544-4431. We analyzed the data by means of nebula models, which account for the expectedly composite source and can reproduce the data. From our modeling, we estimated the main nebula parameters, including the structure and dynamics and the density and temperature distributions. We discuss the uncertainties of the derived values and, in particular, their dependence on the distance. Our observations reveal the presence of an equatorial disk in rotation; a low-velocity outflow is also found, probably formed of gas expelled from the disk. The main characteristics of our observations and modeling of IRAS08544-4431 are similar to those of better studied objects, confirming our interpretation. The disk rotation indicates a total central mass of about 1.8 Mo, for a distance of 1100 pc. The disk is found to be relatively extended and has a typical diameter of ~ 4 10^16 cm. The total nebular mass is ~ 2 10^-2 Mo, of which ~ 90% corresponds to the disk. Assuming that the outflow is due to mass loss from the disk, we derive a disk lifetime of ~ 10000 yr. The disk angular momentum is found to be comparable to that of the binary system at present. Assuming that the disk angular momentum was transferred from the binary system, as expected, the high values of the disk angular momentum in this and other similar disks suggest that the size of the stellar orbits has significantly decreased as a consequence of disk formation.



rate research

Read More

So far, only one rotating disk has been clearly identified and studied in AGB or post-AGB objects (in the Red Rectangle), by means of observations with high spectral and spatial resolution. However, disks are thought to play a key role in the late stellar evolution and are suspected to surround many evolved stars. We aim to extend our knowledge on these structures. We present interferometric observations of CO J=2-1 emission from the nebula surrounding the post-AGB star AC Her, a source belonging to a class of objects that share properties with the Red Rectangle and show hints of Keplerian disks. We clearly detect the Keplerian dynamics of a second disk orbiting an evolved star. Its main properties (size, temperature, central mass) are derived from direct interpretation of the data and model fitting. With this we confirm that there are disks orbiting the stars of this relatively wide class of post-AGB objects
Context: Post-Asymptotic Giant Branch (AGB) binaries are surrounded by stable dusty and gaseous disks similar to the ones around young stellar objects. Whereas significant effort is spent on modeling observations of disks around young stellar objects, the disks around post-AGB binaries receive significantly less attention, even though they pose significant constraints on theories of disk physics and binary evolution. Aims: We want to examine the structure of and phenomena at play in circumbinary disks around post-AGB stars. We continue the analysis of our near-infrared interferometric image of the inner rim of the circumbinary disk around IRAS08544-4431. We want to understand the physics governing this inner disk rim. Methods: We use a radiative transfer model of a dusty disk to reproduce simultaneously the photometry as well as the near-infrared interferometric dataset on IRAS08544-4431. The model assumes hydrostatic equilibrium and takes dust settling self-consistently into account. Results: The best-fit radiative transfer model shows excellent agreement with the spectral energy distribution up to mm wavelengths as well as with the PIONIER visibility data. It requires a rounded inner rim structure, starting at a radius of 8.25 au. However, the model does not fully reproduce the detected over-resolved flux nor the azimuthal flux distribution of the inner rim. While the asymmetric inner disk rim structure is likely to be the consequence of disk-binary interactions, the origin of the additional over-resolved flux remains unclear. Conclusions: As in young stellar objects, the disk inner rim of IRAS08544-4431 is ruled by dust sublimation physics. Additional observations are needed to understand the origin of the extended flux and the azimuthal perturbation at the inner rim of the disk.
Some evidences of wind variability and velocity stratification in the extended atmosphere has been found in the spectra of the supergiant V340 Ser (=IRAS 17279$-$1119) taken at the 6-m BTA telescope with a spectral resolution R$ge$60000. The H$alpha$ line has a P Cyg profile whose absorption component (V=+34 km/s) is formed in the upper layers of the expanding atmosphere close to the circumstellar environment. For four dates the mean velocity has been derived from the positions of 300-550 symmetric metal absorptions with an accuracy better than $pm0.1$ km/s: Vr=59.30, 60.09, 58.46, and 55.78 km/s. A lot of low-excitation metal lines have an inverse P Cyg profile. The mean positions of their emission components, Vr=46.3$pm$0.4 km/s, differ systematically from the velocity inferred from symmetric absorptions, suggesting the presence of a velocity gradient in the supergiant extended atmosphere. The multicomponent profile of the NaI D-lines contains the interstellar, Vr=-11.2 km/s, and circumstellar, Vr=+10 km/s, components and the component forming in the upper atmospheric layers, Vr=+34.0 km/s. The mean velocity from 20-30 diffuse interstellar bands (DIBs) identified in the spectra, Vr(DIBs)=-11.6$pm0.2$ km/s, agrees with the velocity from interstellar NaI and KI components. The equivalent width of the oxygen triplet W(7774)=1.25 A corresponds to an absolute magnitude of the star Mv$approx-4.6^m$, which, taking into account the total (interstellar+circumstellar) extinction, leads to a distance to the star d$approx$2.3 kpc.
The nebular circumstellar environments of cool evolved stars are known to harbour a rich morphological complexity of gaseous structures on different length scales. A large part of these density structures are thought to be brought about by the interaction of the stellar wind with a close companion. The S-type asymptotic giant branch star Pi1 Gruis, which has a known companion at ~440 au and is thought to harbour a second, closer-by (<10 au) companion, was observed with the Atacama Large Millimeter/submillimeter Array as part of the ATOMIUM Large programme. In this work, the brightest CO, SiO, and HCN molecular line transitions are analysed. The continuum map shows two maxima, separated by 0.04 (6 au). The CO data unambiguously reveal that Pi1 Grus circumstellar environment harbours an inclined, radially outflowing, equatorial density enhancement. It contains a spiral structure at an angle of 38+/-3 deg with the line-of-sight. The HCN emission in the inner wind reveals a clockwise spiral, with a dynamical crossing time of the spiral arms consistent with a companion at a distance of 0.04 from the asymptotic giant branch star, which is in agreement with the position of the secondary continuum peak. The inner wind dynamics imply a large acceleration region, consistent with a beta-law power of ~6. The CO emission suggests that the spiral is approximately Archimedean within 5, beyond which this trend breaks down as the succession of the spiral arms becomes less periodic. The SiO emission at scales smaller than 0.5 exhibits signatures of gas in rotation, which is found to fit the expected behaviour of gas in the wind-companion interaction zone. An investigation of SiO maser emission reveals what could be a stream of gas accelerating from the surface of the AGB star to the companion. Using these dynamics, we have tentatively derived an upper limit on the companion mass to be ~1.1 Msol.
A set of six debris disk candidates identified with IRAS or WISE excesses were observed at either 350 um or 450 um with the CSO. Five of the targets - HIP 51658, HIP 68160, HIP 73512, HIP 76375, and HIP 112460 - have among the largest measured excess emission from cold dust from IRAS in the 25-100 um bands. Single temperature blackbody fits to the excess dust emission of these sources predict 350-450 um fluxes above 240 mJy. The final target - HIP 73165 - exhibits weak excess emission above the stellar photosphere from WISE measurements at 22 um, indicative of a population of warm circumstellar dust. None of the six targets were detected, with 3 sigma upper limits ranging from 51-239 mJy. These limits are significantly below the expected fluxes from SED fitting. Two potential causes of the null detections were explored - companion stars and contamination. To investigate the possible influence of companion stars, imaging data were analyzed from new AO data from the MMT and archival HST, NIRI, and POSS/2MASS data. The images are sensitive to all stellar companions beyond a radius of 1-94 AU. One target is identified as a binary system, but with a separation too large to impact the disk. While the gravitational effects of a companion do not appear to provide an explanation for the submm upper limits, the majority of the IRAS excess targets show evidence for contaminating sources, based on investigation of higher resolution WISE and archival Spitzer and Herschel images. Finally, the exploratory submm measurements of the WISE excess source suggest that the hot dust present around these targets is not matched by a comparable population of colder, outer dust. More extensive and more sensitive Herschel observations of WISE excess sources will build upon this initial example to further define the characteristics of warm debris disks sources.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا