Do you want to publish a course? Click here

Improving baryon acoustic oscillation measurement with the combination of cosmic voids and galaxies

61   0   0.0 ( 0 )
 Added by Cheng Zhao
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a methodology to optimise the measurement of Baryon Acoustic Oscillation (BAO) from a given galaxy sample. In our previous work, we demonstrated that one can measure BAO from tracers in under-dense regions (voids). In this study, we combine the over-dense and under-dense tracers (galaxies & voids) to obtain better constraints on the BAO scale. To this end, we modify the de-wiggled BAO model with an additional parameter to describe both the BAO peak and the underlying exclusion pattern of void 2PCFs. We show that after applying BAO reconstruction to galaxies, the BAO peak scale of both galaxies and voids are unbiased using the modified model. Furthermore, we use a new 2PCF estimator for a multi-tracer analysis with galaxies and voids. In simulations, the joint sample improves by about 10% the constraint for the post-reconstruction BAO peak position compared to the result from galaxies alone, which is equivalent to an enlargement of the survey volume by 20%. Applying this method to the BOSS DR12 data, we have an 18% improvement for the low-z sample (0.2<z<0.5), but a worse constraint for the high-z sample (0.5<z<0.75), which is consistent with statistical fluctuations for the current survey volume. Future larger samples will give more robust improvements due to less statistical fluctuations.



rate research

Read More

In the context of the study of large-scale structure of the Universe, we analyze the response of cosmic void clustering to selection effects, such as angular incompleteness due to observational systematics and radial selection functions. We find for the case of moderate (<20%) incompleteness: that void sample selection based on a constant radius cut yields robust measurements. This is particularly true for BAO-reconstructed galaxy samples, where large-scale void exclusion effects are mitigated. We also find for the case of severe (up to 90%) incompleteness, a stronger void exclusion effect that can affect the clustering on large scales even for post-reconstructed data, when using the constant cut. For these cases, we introduce void radius selection criteria depending on the (local) observed tracer density that maximizes the BAO peak signal to noise ratio. This selection prevents large exclusion features from contaminating the BAO signal. An accurate estimation of the void distribution is necessary to obtain unbiased clustering measurements with either criterion when dealing with severe incompleteness, such as can be found at the edges of the radial selection function. Moreover we finally verify, with large simulated data sets including lightcone evolution, that both void sample definitions (local and constant) yield unbiased BAO scale measurements. In conclusion, cosmic voids can be used as robust tracers for clustering measurements, even in the case of (moderately) unknown systematics.
We present a void clustering analysis in configuration-space using the completed Sloan Digital Sky Survey IV (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) DR16 samples. These samples consist of Luminous Red Galaxies (LRG) combined with the high redshift tail of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) DR12 CMASS galaxies (called as LRG+CMASS sample), Emission Line Galaxies (ELG) and quasars (QSO). We build void catalogues from the three eBOSS DR16 samples using a ZOBOV-based algorithm, providing 2,814 voids, 1,801 voids and 4,347 voids in the LRG+CMASS, ELG and QSO samples, respectively, spanning the redshift range $0.6<z<2.2$. We measure the redshift space distortions (RSD) around voids using the anisotropic void-galaxy cross-correlation function and we extract the distortion parameter $beta$. We test the methodology on realistic simulations before applying it to the data, and we investigate all our systematic errors on these mocks. We find $beta^{rm LRG}(z=0.74)=0.415pm0.087$, $beta^{rm ELG}(z=0.85)=0.665pm0.125$ and $beta^{rm QSO}(z=1.48)=0.313pm0.134$, for the LRG+CMASS, ELG and QSO sample, respectively. The quoted errors include systematic and statistical contributions. In order to convert our measurements in terms of the growth rate $fsigma_8$, we use consensus values of linear bias from the eBOSS DR16 companion papers~citep{eBOSScosmo}, resulting in the following constraints: $fsigma_8(z=0.74)=0.50pm0.11$, $fsigma_8(z=0.85)=0.52pm0.10$ and $fsigma_8(z=1.48)=0.30pm0.13$. Our measurements are consistent with other measurements from eBOSS DR16 using conventional clustering techniques.
We study the statistics of various large-scale structure tracers in gravity-only cosmological simulations including baryons and cold dark matter (CDM) initialized with two different transfer functions, and simulated as two distinct fluids. This allows us to study the impact of baryon-CDM relative perturbations on these statistics. In particular, we focus on the statistics of cosmic voids, as well as on the matter and halo real-space 2-point correlation function and baryon acoustic oscillations (BAO) peak. We find that the void size function is affected at the 1-2% level at maximum, and that the impact is more important at higher redshift, while the void density profile and void bias are roughly unaffected. We do not detect a sizeable impact of relative baryon-CDM perturbations on the real-space correlation functions of matter and halos or the BAO peak, which is in line with results from previous works. Our results imply that it would be hard to use voids or real-space correlation functions to constrain baryon-CDM relative perturbations, but also that we might not have to include them in models for the analysis of future cosmological surveys data.
Baryon Acoustic Oscillations are considered to be a very robust standard ruler against various systematics. This premise has been tested against observational systematics, but not to the level required for the next generation of galaxy surveys such as the Dark Energy Spectroscopic Instrument (DESI) and Euclid. In this paper, we investigate the effect of observational systematics on the BAO measurement of the final sample of quasars from the extended Baryon Oscillation Spectroscopic Survey Data Release 16 in order to prepare and hone a similar analysis for upcoming surveys. We employ catalogues with various treatments of imaging systematic effects using linear and neural network-based nonlinear approaches and consider how the BAO measurement changes. We also test how the variations to the BAO fitting model respond to the observational systematics. As expected, we confirm that the BAO measurements obtained from the DR16 quasar sample are robust against imaging systematics well within the statistical error, while reporting slightly modified constraints that shift the line-of-sight BAO signal by less than 1.1% . We use realistic simulations with similar redshift and angular distributions as the DR16 sample to conduct statistical tests for validating the pipeline, quantifying the significance of differences, and estimating the expected bias on the BAO scale in future high-precision data sets. Although we find a marginal impact for the eBOSS QSO data, the work presented here is of vital importance for constraining the nature of dark energy with the BAO feature in the new era of big data cosmology with DESI and Euclid.
We present results from the 2D anisotropic Baryon Acoustic Oscillation (BAO) signal present in the final dataset from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: firstly using the full shape of the 2D correlation function and secondly focussing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalise over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of $Omega_c h^2$, $H(z)$, and $D_A(z)$ for three redshift bins with effective redshifts $z = 0.44$, $0.60$, and $0.73$. Within these bins and methodologies, we recover constraints between 5% and 22% error. Our cosmological constraints are consistent with Flat $Lambda$CDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey (BOSS).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا