Unravelling the origin of piezo/ferro-electric properties of metal-organic frameworks (MOFs) nanocrystals


Abstract in English

Metal-organic framework (MOF) UiO-66 nanocrystals were previously believed to be piezo/ferro-electrically inactive because of their centrosymmetric lattice symmetries (Fm-3m (225)) revealed by Powder X-ray diffraction. However, via delicate dual AC resonance tracking piezoresponse force microscopy and piezoresponse force spectroscopy characterizations, our nanoscale probing for the first time demonstrate that UiO-66 nanocrystals show piezo/ferro-electric response. Our compelling experimental and theoretically analyses disclose that the structure of UiO-66 should not be the highly centrosymmetric Fm-3m (225) but a reduced symmetry form instead. UiO-66(Hf)-type MOFs possess stronger piezoresponse and better ferroelectric switching behaviours than their counterparts UiO-66 (Zr)-type MOFs. Our study not only enriches the structural understanding of UiO-66 MOF, but also suggests possible modification of electronic property of the MOFs by judicious selection of metal ions and functional ligands.

Download