Do you want to publish a course? Click here

Cosmic Ray Origin: beyond the Standard Model(s). The case of Pulsar Wind Nebulae and Unidentified very high energy gamma-ray sources

53   0   0.0 ( 0 )
 Added by Omar Tibolla
 Publication date 2018
  fields Physics
and research's language is English
 Authors O. Tibolla




Ask ChatGPT about the research

The riddle of the origin of Cosmic Rays is open since one century. Recently we got the experimental proof of hadronic acceleration in Supernovae Remnants, however new questions rised and no final answer has been provided so far. Gamma ray observations above 100 MeV reveal the sites of cosmic ray acceleration to energies where they are unaffected by solar modulation. In the last years the knowledge in this field of research widely increased, however almost 50% of the TeV (> 10^12 eV) Galactic sources are still unidentified, at GeV (> 10^9 eV) energies, 67% of EGRET sources were unidentified and also with the newer generation of gamma-ray satellites we have the same result: in fact, at low Galactic latitudes (b<10 deg), 62% of the Fermi LAT detected sources have no formal counterpart. Hence understanding the high energy unidentified sources will be a crucial brick in solving the whole riddle of Cosmic Rays origin. Several examples will be shown, underlining the importance of the so-called dark sources. Both theoretical aspects (with particular emphasis to the so-called Ancient Pulsar Wind Nebulae scenario) and their observational proofs will be discussed.

rate research

Read More

197 - O.C. de Jager 2009
In this paper we explore the evolution of a PWN while the pulsar is spinning down. An MHD approach is used to simulate the evolution of a composite remnant. Particular attention is given to the adiabatic loss rate and evolution of the nebular field strength with time. By normalising a two component particle injection spectrum (which can reproduce the radio and X-ray components) at the pulsar wind termination shock to the time dependent spindown power, and keeping track with losses since pulsar/PWN/SNR birth, we show that the average field strength decreases with time as $t^{-1.3}$, so that the synchrotron flux decreases, whereas the IC gamma-ray flux increases, until most of the spindown power has been dumped into the PWN. Eventually adiabatic and IC losses will also terminate the TeV visibility and then eventually the GeV visibility.
59 - S. Kaufmann , O. Tibolla 2018
A large part of the Galactic sources emitting very high energy (VHE; > 10^{11} eV) gamma-rays are currently still unidentified. The evolution of Pulsar Wind Nebulae (PWNe) plays a crucial role in interpreting these sources. The time-dependent modeling of PWNe has been tested on a sample of well-known young and intermediate age PWNe; and it is currently applied to the full-sample of unidentified VHE Galactic sources. The consequences of this interpretation go far beyond the interpretation of dark sources (i.e. VHE gamma-ray sources without lower energies, radio or X-ray, counterparts): e.g. there could be strong implication in the origin of cosmic rays and (when considering a leptonic origin of the gamma-ray signal) they can be important for reinterpreting the detection of starburst galaxies in the TeV gamma-ray band. Moreover, the number of Galactic VHE sources is currently increasing with further observation by Imaging Atmospheric Cherenkov Telescopes (IACTs) and by the advent of more sensitive water Cherenkov telescopes such as HAWC (High-Altitude Water Cherenkov Observatory); therefore the physical interpretation of unidentified sources becomes more and more crucial.
We explain the observed multiwavelength photon spectrum of a number of BL Lac objects detected at very high energy (VHE, $E gtrsim 30$ GeV), using a lepto-hadronic emission model. The one-zone leptonic emission is employed to fit the synchrotron peak. Subsequently, the SSC spectrum is calculated, such that it extends up to the highest energy possible for the jet parameters considered. The data points beyond this energy, and also in the entire VHE range are well explained using a hadronic emission model. The ultrahigh-energy cosmic rays (UHECRs, $Egtrsim 0.1$ EeV) escaping from the source interact with the extragalactic background light (EBL) during propagation over cosmological distances to initiate electromagnetic cascade down to $sim1$ GeV energies. The resulting photon spectrum peaks at $sim1$ TeV energies. We consider a random turbulent extragalactic magnetic field (EGMF) with a Kolmogorov power spectrum to find the survival rate of UHECRs within 0.1 degrees of the direction of propagation in which the observer is situated. We restrict ourselves to an RMS value of EGMF, $B_{rm rms}sim 10^{-5}$ nG, for a significant contribution to the photon spectral energy distribution (SED) from UHECR interactions. We found that UHECR interactions on the EBL and secondary cascade emission can fit gamma-ray data from the BL Lacs we considered at the highest energies. The required luminosity in UHECRs and corresponding jet power are below the Eddington luminosities of the super-massive black holes in these BL Lacs.
We present a new catalog of TeV gamma-ray sources using 1523 days of data from the High Altitude Water Cherenkov (HAWC) observatory. The catalog represents the most sensitive survey of the Northern gamma-ray sky at energies above several TeV, with three times the exposure compared to the previous HAWC catalog, 2HWC. We report 65 sources detected at $geq$ 5 sigma significance, along with the positions and spectral fits for each source. The catalog contains eight sources that have no counterpart in the 2HWC catalog, but are within $1^circ$ of previously detected TeV emitters, and twenty sources that are more than $1^circ$ away from any previously detected TeV source. Of these twenty new sources, fourteen have a potential counterpart in the fourth textit{Fermi} Large Area Telescope catalog of gamma-ray sources. We also explore potential associations of 3HWC sources with pulsars in the ATNF pulsar catalog and supernova remnants in the Galactic supernova remnant catalog.
The discovery of extended TeV emission around the Geminga and PSR B0656+14 pulsars, with properties consistent with free particle propagation in the interstellar medium (ISM), has sparked considerable discussion on the possible presence of such halos in other systems. Here we make an assessment of the current TeV source population associated with energetic pulsars, in terms of size and estimated energy density. Based on two alternative estimators we conclude that a large majority of the known TeV sources have emission originating in the zone energetically and dynamically dominated by the pulsar (i.e. the pulsar wind nebula), rather than from a halo of particles diffusing in to the ISM. Furthermore, whilst the number of established halos will surely increase in the future, we find that it is unlikely that such halos contribute significantly to the total TeV $gamma$-ray luminosity from electrons accelerated in PWN.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا