Do you want to publish a course? Click here

A note on local BRST cohomology of Yang-Mills type theories with free abelian factors

44   0   0.0 ( 0 )
 Added by Nicolas Boulanger
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We extend previous work on antifield dependent local BRST cohomology for matter coupled gauge theories of Yang-Mills type to the case of gauge groups that involve free abelian factors. More precisely, we first investigate in a model independent way how the dynamics enters the computation of the cohomology for a general class of Lagrangians in general spacetime dimensions. We then discuss explicit solutions in the case of specific models. Our analysis has implications for the structure of characteristic cohomology and for consistent deformations of the classical models, as well as for divergences/counterterms and for gauge anomalies that may appear during perturbative quantization.

rate research

Read More

The question of whether BPS invariants are protected in maximally supersymmetric Yang-Mills theories is investigated from the point of view of algebraic renormalisation theory. The protected invariants are those whose cohomology type differs from that of the action. It is confirmed that one-half BPS invariants ($F^4$) are indeed protected while the double-trace one-quarter BPS invariant ($d^2F^4$) is not protected at two loops in D=7, but is protected at three loops in D=6 in agreement with recent calculations. Non-BPS invariants, i.e. full superspace integrals, are also shown to be unprotected.
We present a local setup for the recently introduced BRST-invariant formulation of Yang-Mills theories for linear covariant gauges that takes into account the existence of gauge copies `a la Gribov and Zwanziger. Through the convenient use of auxiliary fields, including one of the Stueckelberg type, it is shown that both the action and the associated nilpotent BRST operator can be put in local form. Direct consequences of this fully local and BRST-symmetric framework are drawn from its Ward identities: (i) an exact prediction for the longitudinal part of the gluon propagator in linear covariant gauges that is compatible with recent lattice results and (ii) a proof of the gauge-parameter independence of all correlation functions of local BRST-invariant operators.
143 - Marc Gillioz 2016
We show how to consistently renormalize $mathcal{N} = 1$ and $mathcal{N} = 2$ super-Yang-Mills theories in flat space with a local (i.e. space-time-dependent) renormalization scale in a holomorphic scheme. The action gets enhanced by a term proportional to derivatives of the holomorphic coupling. In the $mathcal{N} = 2$ case, this new action is exact at all orders in perturbation theory.
We consider the partition function and correlation functions in the bosonic and supersymmetric Yang-Mills matrix models with compact semi-simple gauge group. In the supersymmetric case, we show that the partition function converges when $D=4,6$ and 10, and that correlation functions of degree $k< k_c=2(D-3)$ are convergent independently of the group. In the bosonic case we show that the partition function is convergent when $D geq D_c$, and that correlation functions of degree $k < k_c$ are convergent, and calculate $D_c$ and $k_c$ for each group, thus extending our previous results for SU(N). As a special case these results establish that the partition function and a set of correlation functions in the IKKT IIB string matrix model are convergent.
154 - R. Jackiw 1997
Various gauge invariant but non-Yang-Mills dynamical models are discussed: Precis of Chern-Simons theory in (2+1)-dimensions and reduction to (1+1)-dimensional B-F theories; gauge theories for (1+1)-dimensional gravity-matter interactions; parity and gauge invariant mass term in (2+1)-dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا