Do you want to publish a course? Click here

Junk News on Military Affairs and National Security: Social Media Disinformation Campaigns Against US Military Personnel and Veterans

59   0   0.0 ( 0 )
 Added by Philip Howard
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Social media provides political news and information for both active duty military personnel and veterans. We analyze the subgroups of Twitter and Facebook users who spend time consuming junk news from websites that target US military personnel and veterans with conspiracy theories, misinformation, and other forms of junk news about military affairs and national security issues. (1) Over Twitter we find that there are significant and persistent interactions between current and former military personnel and a broad network of extremist, Russia-focused, and international conspiracy subgroups. (2) Over Facebook, we find significant and persistent interactions between public pages for military and veterans and subgroups dedicated to political conspiracy, and both sides of the political spectrum. (3) Over Facebook, the users who are most interested in conspiracy theories and the political right seem to be distributing the most junk news, whereas users who are either in the military or are veterans are among the most sophisticated news consumers, and share very little junk news through the network.



rate research

Read More

Users online tend to consume information adhering to their system of beliefs and to ignore dissenting information. During the COVID-19 pandemic, users get exposed to a massive amount of information about a new topic having a high level of uncertainty. In this paper, we analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation concerning COVID-19. We compare the two platforms on about three million pieces of content analyzing user interaction with respect to news articles. We first describe users consumption patterns on the two platforms focusing on the political leaning of news outlets. Finally, we characterize the echo chamber effect by modeling the dynamics of users interaction networks. Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content, with a consequent affiliation towards reliable sources in terms of engagement and comments. Conversely, the lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior. Twitter users show segregation towards reliable content with a uniform narrative. Gab, instead, offers a more heterogeneous structure where users, independently of their leaning, follow people who are slightly polarized towards questionable news.
Social media is currently one of the most important means of news communication. Since people are consuming a large fraction of their daily news through social media, most of the traditional news channels are using social media to catch the attention of users. Each news channel has its own strategies to attract more users. In this paper, we analyze how the news channels use sentiment to garner users attention in social media. We compare the sentiment of social media news posts of television, radio and print media, to show the differences in the ways these channels cover the news. We also analyze users reactions and opinion sentiment on news posts with different sentiments. We perform our experiments on a dataset extracted from Facebook Pages of five popular news channels. Our dataset contains 0.15 million news posts and 1.13 billion users reactions. The results of our experiments show that the sentiment of user opinion has a strong correlation with the sentiment of the news post and the type of information source. Our study also illustrates the differences among the social media news channels of different types of news sources.
Deceased public figures are often said to live on in collective memory. We quantify this phenomenon by tracking mentions of 2,362 public figures in English-language online news and social media (Twitter) one year before and after death. We measure the spike and decay of attention following death and model them as the interplay of communicative and cultural memory. Clustering reveals four patterns of post-mortem memory, and regression analysis shows that boosts in media attention are largest for pre-mortem popular anglophones of any gender who died a young, unnatural death; that long-term boosts are smallest for leaders and largest for artists; and that, while both the news and Twitter are triggered by young and unnatural deaths, the news additionally curates collective memory when old persons or leaders die. Overall, we illuminate the age-old question who is remembered by society, and the distinct roles of news and social media in collective memory formation.
241 - Lester Ingber 2014
Ideas by Statistical Mechanics (ISM) is a generic program to model evolution and propagation of ideas/patterns throughout populations subjected to endogenous and exogenous interactions. The program is based on the authors work in Statistical Mechanics of Neocortical Interactions (SMNI). This product can be used for decision support for projects ranging from diplomatic, information, military, and economic (DIME) factors of propagation/evolution of ideas, to commercial sales, trading indicators across sectors of financial markets, advertising and political campaigns, etc. It seems appropriate to base an approach for propagation of ideas on the only system so far demonstrated to develop and nurture ideas, i.e., the neocortical brain. The issue here is whether such biological intelligence is a valid application to military intelligence, or is it simply a metaphor?
In this paper, we consider a dataset comprising press releases about health research from different universities in the UK along with a corresponding set of news articles. First, we do an exploratory analysis to understand how the basic information published in the scientific journals get exaggerated as they are reported in these press releases or news articles. This initial analysis shows that some news agencies exaggerate almost 60% of the articles they publish in the health domain; more than 50% of the press releases from certain universities are exaggerated; articles in topics like lifestyle and childhood are heavily exaggerated. Motivated by the above observation we set the central objective of this paper to investigate how exaggerated news spreads over an online social network like Twitter. The LIWC analysis points to a remarkable observation these late tweets are essentially laden in words from opinion and realize categories which indicates that, given sufficient time, the wisdom of the crowd is actually able to tell apart the exaggerated news. As a second step we study the characteristics of the users who never or rarely post exaggerated news content and compare them with those who post exaggerated news content more frequently. We observe that the latter class of users have less retweets or mentions per tweet, have significantly more number of followers, use more slang words, less hyperbolic words and less word contractions. We also observe that the LIWC categories like bio, health, body and negative emotion are more pronounced in the tweets posted by the users in the latter class. As a final step we use these observations as features and automatically classify the two groups achieving an F1 score of 0.83.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا